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Abstract

This paper provides a constructive proof of identification for the discrete-time variant of the Mixed Proportional Hazard

(MPH) model. The identification result is used to develop a nonparametric estimator based on the Generalized Method of

Moments (GMM), which converges at root-n rate and is asymptotically normally distributed. Numerical simulations demon-

strate that the estimator also performs well in finite samples.
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1. Introduction

In economics, hazard models are widely employed to an-

alyze time-to-event data, such as in the contexts of exiting

unemployment, retirement decisions, and firm failure. It is

now well-known that ignoring unobserved heterogeneity in

hazard models can cause the estimated hazard to decline

more than the true baseline hazard. To account for unob-

served heterogeneity, Lancaster (1979) introduced the mixed

proportional hazard (MPH) model, a generalization of Cox

(1972)’s proportional hazard model. In the MPH model, the

hazard rate is specified as the product of three terms: a base-

line hazard that varies with time, a regression function that

captures the effect of observed covariates, and a random vari-

able that accounts for unobserved heterogeneity.

There is an extensive literature on the identification and

estimation of the continuous-time MPH model, where non-

parametric identification has been established using varia-

tion in the regression function (Elbers and Ridder, 1982; Heck-

man and Singer, 1984), multiple spell data (Honoré, 1993),

and time-varying regressors (Honoré, 1990; Brinch, 2007). How-

ever, the discrete-time variant has received less attention.
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The discrete-time MPH model was first employed by van den

Berg and van Ours (1996), who estimated the model using

aggregate data, leveraging variation across cohorts for iden-

tification. Recently, Alvarez et al. (2021) extended the iden-

tification approach using multiple spell data from the con-

tinuous to the discrete-time setting.

In this paper, I present the discrete-time counterpart to

the identification result that utilizes variation in the regres-

sion function. The identification argument is similar to van

den Berg and van Ours (1996), but instead of cohort effects, it

utilizes variation in an exogenous regressor. My main con-

tribution to the literature is the use of the moment condi-

tions from this model to construct a GMM estimator, which

is asymptotically normal and converges at the regular rate of
p

n , where n is the sample size.

Relative to existing alternatives, the discrete-time model

and its corresponding GMM estimator outlined in this pa-

per offer several advantages. First, although the continuous-

time MPH model is nonparametrically identified, no root-n

consistent estimators exist for it.1 Second, real-world data

1Heckman and Singer (1984) proposed the non-parametric Maximum
Likelihood Estimator (NPMLE) for the MPH model, but Baker and Melino
(2000) shows that this estimator exhibits significant systematic bias, even
in moderately sized samples. Horowitz (1999) proposed an estimator rep-
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is often time-aggregated; for example, unemployment dura-

tions are typically recorded in weeks, making the discrete-

time model particularly relevant. Finally, the estimator is

straightforward to implement and allows for regular infer-

ence, making it a valuable addition to an applied researcher’s

toolkit. One notable mention is Hausman and Woutersen

(2014), who propose an estimator for the semiparametric con-

tinuous time MPH model that accommodates discrete mea-

surement of durations; however, their estimator requires a

continuous, time-varying regressor and has a non-smooth

objective function, making computation challenging.

2. Identification and Estimation

Let ν represent the unobservable fixed type of each unit.

A binary treatment, denoted by the treatment indicator Z ,

is assigned to each unit, where Z ∈ {0, 1}.2 Using poten-

tial outcome notation (Rubin, 1974), let Tz denote the real-

ized event duration under treatment z , where Tz takes val-

ues in {1, 2, 3, . . .}. The econometrician observes Tz only for

units assigned treatment z , so the observed duration T can

be written as T = T1Z +T0(1−Z ).

Denote the potential probability distribution function and

survival probabilities under treatment z by gz (·) and Sz (·), re-

spectively. To be specific,

gz (t |·) = Pr(Tz = t |·), Sz (t |·) = Pr(Tz ≥ t |·)

with Sz (1|·) = 1. Finally, denote the k -th moment of the type

distribution by µk , such that µk =E(νk ), and define the nor-

malized moments µ̃k =µk/µ
k
1 .

Assumption 1. The hazard at time t for a unit under treat-

ment z is given by the MPH specification as follows:

Pr(Tz = t | Tz ≥ t ,ν) =λtφzν,

resenting the continuous-time MPH model as a transformation model. It
requires durations to be measured on a continuous scale and converges at
a rate slower than

p
n . For a comprehensive review of estimators for the

MPH model, see Hausman and Woutersen (2014).
2The identification result and the estimator also apply to cases with more

than two treatment levels.

where λt > 0,φz > 0, and ν ∈ (0, ν̄]with ν̄ <∞.

According to the above specification, the hazard, defined

as the probability of the event ending at time t given that it

hasn’t yet ended, is a product of the baseline hazard λt cap-

turing the effect of time, the effect of treatment φz , and the

unit-specific unobserved type ν. For instance, if Tz repre-

sents unemployment duration, then λt would reflect how

duration affects the job-finding probability, say due to stigma,

skill depreciation, or shifts in job search effort. Meanwhile,

the term ν would represent unobserved individual charac-

teristics that influence the likelihood of finding a job. The

treatment Z could reflect differences in unemployment ben-

efits, severance pay, or other active labor market policies,

with the assumption that these policies proportionally shift

the hazard of exiting unemployment byφz at all durations.

Note that the MPH specification results in the following

expressions:

gz (t |ν) =λtφzνSz (t |ν), Sz (t |ν) =
t−1
∏

s=1

�

1−λsφzν
�

Since we assumed thatν is bounded, all its moments will ex-

ist. Thus, taking the expectation of the expression for gz (t |ν)

with respect toν and expanding it for t = 1, 2, 3, ..., we obtain:

gz (1) =λ1φzµ1

gz (2) =λ2

�

φzµ1−λ1φ
2
zµ2

�

gz (3) =λ3

�

φzµ1− (λ1+λ2)φ
2
zµ2+λ1λ2φ

3
zµ3

�

...

Or, more compactly,

gz (t ) =λt

t
∑

k=1

φk
z ck (t )µk

where ck (t ) is recursively defined as:

ck (t ) = ck (t −1)−λt−1ck−1(t −1)

with c1(t ) = 1 for all t and ck (t ) = 0 for k > t .
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Denote the effect of treatment on hazards by γ=φ1/φ0.

Note that the baseline hazards can only be identified up to a

scale, so we normalize φ0µ1 = 1. Then, by substituting φ1 =

γφ0 and φ0 = 1/µ1, we can rewrite the expressions for g1(t )

and g0(t ) as follows:

g1(t ) =λt

t
∑

k=1

γk ck (t )µ̃k , g0(t ) =λt

t
∑

k=1

ck (t )µ̃k (1)

Given the definition of ck (t ), the above expressions im-

ply that for some integer T̄ , g1(t ) and g0(t ) for t = 1, . . . , T̄

can be represented as a system of equations involving γ and

λt and µ̃t for t = 1, . . . , T̄ . Since µ̃1 = 1 by definition, this

results in 2T̄ unknown parameters and 2T̄ equations. The

following theorem establishes that this system of equations

is identified, provided φ1 ̸= φ0. The intuition for this result

is that the first-period probabilities, g1(1) and g0(1), indicate

how treatment affects the unit-specific hazard at each dura-

tion. This allows us to attribute the remaining differences in

later probabilities to composition effects governed by distri-

butional parameters, thereby enabling their identification.

Theorem 1. Under Assumption 1, the treatment effect γ =

φ1/φ0 is identified from the first-period potential distribu-

tions g1(1) and g0(1). Furthermore, provided γ ̸= 1, the base-

line hazards {λt }T̄t=1 and normalized moments {µ̃t }T̄t=2 are iden-

tified up to a scale from the potential duration distributions

{g1(t ), g0(t )}T̄t=1.

Proof. See Appendix A.

This result implies that if Z is independent of ν, we can

infer potential duration distributions from the observed du-

ration T and build an estimator for this model using the Gen-

eralized Method of Moments (GMM).

Assumption 2. The following conditions hold:

(i) Z is independent of ν, i.e., Z ⊥ ν.

(ii) The sequence {Ti , Zi }ni=1 is independently and identi-

cally distributed (i.i.d.).3

3{Ti , Zi } represents the realization of {T , Z } for unit i .

Denote the set of parameters byΘ =
�

{λt }T̄t=1,{µ̃t }T̄t=2,γ
	

,

and let g̃1(t ;Θ) and g̃0(t ;Θ) represent the potential duration

distributions expressed as functions of the parameters, as

given by the right-hand side of eq. (1). Define πz = Pr(Z = z )

and consider the following moment condition for unit i :

mi ,t ,z (Θ) =
I{Zi = z } · I{Ti = t }

πz
− g̃1(t ;Θ)

We can construct a GMM estimator based on the set of mo-

ment conditions mi (Θ) =
�

{mi ,t ,z (Θ)}T̄t=1

	

z∈{0,1} as follows:

Θ̂ = arg max m̂ (Θ)′m̂ (Θ)

where m̂ (Θ) = 1
n

∑n
i=1 mi (Θ) is 2T̄ ×1 vector.

Proposition 1. Under Assumptions 1 and 2,

p
n (Θ̂−Θ)

p
−→N (0, M̂ ′M )

where M̂ = d m̂ (Θ̂)/d Θ̂.

Proof. See Appendix B.

3. Simulations

This section evaluates the finite sample performance of

my estimator through Monte Carlo simulations. Each simu-

lation is repeated 5000 times across three sample sizes: n =

1500, 5000, and 10000. The data generation process (DGP)

is specified in Table 1. The baseline hazard is modeled us-

ing a Weibull function with three different set of parameters

to capture a decreasing, constant and increasing hazard, al-

lowing us to test the estimator’s performance under different

possible realistic scenarios. For example, in the context of

unemployment, skill deterioration or stigma would lead to a

decreasing hazard. Conversely, individuals searching harder

as their savings deplete would result in an increasing hazard.

Figure 1 presents the average estimate of the baseline haz-

ard across simulations, plotted against the true baseline haz-

ard for each of the scenarios. The grey shaded areas depict
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Table 1: Data Generating Process

Parameter Description Value
T̄ Total number of time periods 6
φ0 Proportional impact of Z = 0 1
φ1 Proportional impact of Z = 1 2

P r (Z ) Probability Z equals 1 0.5

λ(t ) Baseline hazard
�

b
a

�

·
�

t
a

�b−1

(a) decreasing (a = 2, b = 0.75)
(b) constant (a = 3, b = 1)
(c) increasing (a = 3.15, b = 1.25)

95% confidence intervals, calculated using the standard de-

viation of the estimates from the simulations. From this fig-

ure, we can see that the estimator performs well at captur-

ing the movements of the baseline hazard over time, even

in moderately sized samples. Table 2 presents the average

bias, standard deviation (SD), and root mean squared error

(RMSE) for all parameters, along with the average estimation

time per simulation. There are a few things to note: first,

estimation is fast, with about 1-4 seconds across different

DGPs. Second, the estimates for the normalized moments,

specifically higher moments, exhibit some bias in small sam-

ples. Though this does not seem to impact the accuracy or

precision of the baseline hazard estimates, which are of pri-

mary interest in empirical research, making the noisier esti-

mation of higher moments less concerning. However, if the

goal is to analyze the distribution of heterogeneity beyond

just variance, skewness, or kurtosis, a considerably larger sam-

ple size would be necessary.

4. Conclusion

In this paper, I show that the discrete-time MPH model is

identified using variation in an exogenous regressor, extend-

ing earlier analogous results for the continuous-time model.

Moreover, the proof is constructive, resulting in a fully non-

parametric GMM-based estimator that is consistent and asymp-

totically normal. Simulations show that the estimator also

performs well in finite samples.

One limitation of the model in the paper from an applied

perspective is that the MPH specification is somewhat re-

Figure 1: Baseline Hazard Estimates Across Simulations
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Note: The plots display the true baseline hazard (dotted red line) alongside
the average estimates across simulations (solid black line) for three DGPs
with different baseline hazard shapes, each run with sample sizes of 1500,
5000, and 10000. The shaded gray areas represent 95% confidence intervals.

strictive, as it assumes the treatment variable affects the haz-

ard uniformly across all durations. However, in practice, the

effect of policies can change depending on the time elapsed

until the event occurs. For instance, receiving severance pay

may reduce the likelihood of exiting unemployment early in

the spell but have little impact at later durations. An avenue

for future research would be to extend the model to estimate

treatment effects that vary with duration.
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Table 2: Bias, Standard Error, and RMSE for all Parameters

Panel A: Decreasing Hazard

Sample size 1500 5000 10000
Compute time 1.54 1.89 2.01

Parameter Bias SD RMSE Bias SD RMSE Bias SD RMSE

γ 0.017 0.159 0.160 0.006 0.087 0.087 0.003 0.061 0.061
λ1 -0.002 0.030 0.030 -0.001 0.016 0.016 -0.000 0.012 0.012
λ2 0.011 0.041 0.042 0.005 0.025 0.025 0.002 0.018 0.018
λ3 0.000 0.052 0.052 -0.001 0.029 0.029 -0.001 0.020 0.020
λ4 0.012 0.052 0.053 0.006 0.029 0.030 0.003 0.020 0.021
λ5 0.006 0.060 0.060 0.002 0.032 0.032 0.000 0.023 0.023
λ6 0.010 0.063 0.063 0.004 0.035 0.035 0.002 0.025 0.025
µ̃2 0.028 0.144 0.146 0.012 0.094 0.094 0.006 0.070 0.070
µ̃3 0.223 0.614 0.654 0.095 0.419 0.430 0.053 0.318 0.323
µ̃4 1.490 2.562 2.964 0.638 1.526 1.654 0.381 1.158 1.219
µ̃5 9.001 14.886 17.396 3.842 6.464 7.519 2.379 4.581 5.162
µ̃6 51.255 99.631 112.042 21.285 35.337 41.253 13.420 22.890 26.534

Panel B: Constant Hazard

Sample size 1500 5000 10000
Compute time 1.27 1.64 3.58

Parameter Bias SD RMSE Bias SD RMSE Bias SD RMSE

γ 0.037 0.188 0.192 0.016 0.103 0.104 0.009 0.074 0.074
λ1 -0.004 0.026 0.027 -0.002 0.015 0.015 -0.001 0.010 0.010
λ2 0.018 0.038 0.042 0.008 0.023 0.024 0.005 0.016 0.017
λ3 0.009 0.058 0.059 0.003 0.032 0.032 0.001 0.023 0.023
λ4 0.023 0.065 0.069 0.011 0.036 0.037 0.006 0.026 0.026
λ5 0.022 0.079 0.082 0.008 0.043 0.044 0.005 0.030 0.031
λ6 0.027 0.089 0.093 0.011 0.048 0.049 0.006 0.034 0.034
µ̃2 0.103 0.236 0.257 0.051 0.158 0.166 0.031 0.122 0.126
µ̃3 0.751 1.097 1.329 0.367 0.761 0.844 0.236 0.597 0.642
µ̃4 4.476 5.358 6.981 2.136 3.076 3.745 1.413 2.339 2.733
µ̃5 24.769 34.429 42.413 11.539 14.679 18.671 7.681 10.200 12.768
µ̃6 131.028 232.304 266.709 59.162 83.141 102.042 39.104 54.329 66.939

Panel C: Increasing Hazard

Sample size 1500 5000 10000
Compute time 0.98 1.35 1.64

Parameter Bias SD RMSE Bias SD RMSE Bias SD RMSE

γ 0.054 0.195 0.202 0.023 0.107 0.109 0.013 0.075 0.077
λ1 -0.005 0.024 0.025 -0.003 0.014 0.014 -0.001 0.010 0.010
λ2 0.020 0.037 0.042 0.010 0.022 0.024 0.006 0.016 0.017
λ3 0.020 0.070 0.073 0.008 0.038 0.039 0.004 0.028 0.028
λ4 0.038 0.090 0.098 0.017 0.048 0.051 0.011 0.034 0.036
λ5 0.046 0.118 0.127 0.018 0.062 0.065 0.011 0.044 0.046
λ6 0.056 0.143 0.154 0.022 0.073 0.076 0.013 0.052 0.054
µ̃2 0.147 0.263 0.301 0.074 0.175 0.190 0.048 0.135 0.143
µ̃3 0.953 1.268 1.587 0.488 0.860 0.988 0.323 0.672 0.745
µ̃4 4.984 5.756 7.614 2.522 3.414 4.245 1.697 2.647 3.144
µ̃5 24.189 31.930 40.058 11.960 14.554 18.838 8.156 10.781 13.519
µ̃6 112.368 186.812 218.003 53.898 69.731 88.133 37.034 48.696 61.179

Notes: The table reports average bias, standard deviation, and RMSE for all parameters across nine cases—three DGPs and sample sizes 1500,
5000, and 10000—over 5000 iterations. Compute time represents the average seconds taken for estimation per simulation.
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Appendix A. Proof of Theorem 1

Proof. First note that γ is identified as γ = g1(1)/g0(1). Now,
utilizing the expressions for g1(t ) and g0(t ) in eq. (1), we can
derive:

g1(t )−γt g0(t ) =λt

t−1
∑

k=1

γk (1−γt−k )ck (t )µ̃k

Note that the summation only extends to t − 1 instead of t
because the last term corresponding to k = t is equal to 0.
From the above equation, we can derive the following ex-
pression for the baseline hazard:

λt =
g1(t )−γt g0(t )
∑t−1

k=1γ
k (1−γt−k )ck (t )µ̃k

(1)

Similarly, we can also derive an expression for the normal-
ized moments of the type distribution. In particular, taking
the ratio of g1(t ) and g0(t ) and expanding the summation to
separate out the last term, we get:

g1(t )
g0(t )

=
γt ct (t )µ̃t +
∑t−1

k=1γ
k ck (t )µ̃k

ct (t )µ̃t +
∑t−1

k=1 ck (t )µ̃k

Now, from the above expression, we can derive:

µ̃t =
g0(t )
∑t−1

k=1γ
k ck (t )µ̃k − g1(t )

∑t−1
k=1 ck (t )µ̃k

ct (t )
�

g1(t )−γt g0(t )
� (2)

The expressions for λt and µ̃t in eq. (1) and eq. (2), re-
spectively, are well-defined when γ ̸= 1, which guarantees
that g1(t ) ̸= γt g0(t ). Specifically, both the numerator and de-
nominator in these equations are non-zero if g1(t ) ̸= γt g0(t ),
because λt , µ̃t , and ct (t ) (defined as ct (t ) = (−1)t−1

∏t−1
s=1λs )

are all non-zero by assumption.4

To see that γ ̸= 1 implies g1(t ) ̸= γt g0(t ), without loss of
generality, assume γ > 1. In which case, S1(t | ν) < S0(t | ν)
for all ν and t > 1, implying that for t > 1, E[νS1(t | ν)] <
E[νS0(t | ν)]. Multiplying both sides by φ0 and λt , and not-
ing that gz (t ) = λtφzE[νSz (t | ν)], we get that g1(t ) < γg0(t ).
Since γ > 1, it follows that g1(t ) < γt g0(t ) for t > 1. An anal-
ogous argument applies when γ < 1, in which case g1(t ) >
γt g0(t ) for t > 1.

The rest of the proof follows by induction. For T̄ = 1, the
statement of the theorem is true as we can identify λ1 from
g1(1) and g0(1). Specifically, µ̃1 = 1 by definition, and since
we normalized φ0µ1 = 1, we have λ1 = g0(1). Now, assume
that the statement is true for T̄ = t−1; we will argue that then
the statement is also true for T̄ = t . The statement being true
for T̄ = t −1 means that we can identify {λs }t−1

s=1 and {µ̃s }t−1
s=2

from {g1(s ), g0(s )}t−1
s=1. Now, if in addition we also have g1(t )

4Essentially, the denominator in eq. (1), being λt > 0 times the numer-
ator, will also be non-zero if the numerator is non-zero. Additionally, the
denominator in eq. (2) is non-zero because ct (t )> 0, and the numerator is
non-zero since µ̃t > 0.

and g0(t ), we can use the expressions given in eq. (1) and
eq. (2) to obtain λt and µ̃t . This is because the expressions
forλt andµt only involve {µ̃s }t−1

s=2 and {ck (t )}tk=1, and the lat-
ter only depends on {λs }t−1

s=1.

Appendix B. Proof of Proposition 1

Proof. From Assumption 2, it follows that:

E
� I{Z = z } · I{T = t }

πz

�

=πz ·E
� I{Tz = t }

πz

�

�

�

�

Z = z
�

=E[I{Tz = t }] = gz (t )

This implies that E[mi (Θ)] = 0, and hence, from Theorem 1,
Θ is identified from E[mi (Θ)]. The rest of the result follows
from the asymptotic properties of GMM estimators as estab-
lished in Hansen (1982).
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