
DURATION DEPENDENCE AND HETEROGENEITY:

LEARNING FROM EARLY NOTICE OF LAYOFF∗

DIV BHAGIA†

July 10, 2024

Abstract

This paper presents a novel approach to distinguish the impact of duration de-

pendent forces and adverse selection on the exit rate from unemployment by lever-

aging variation in the length of layoff notices. I formulate a Mixed Hazard model

in discrete time and specify the conditions under which variation in notice length

enables the identification of structural duration dependence while allowing for ar-

bitrary heterogeneity across workers. Utilizing data from the Displaced Worker

Supplement (DWS), I employ the Generalized Method of Moments (GMM) to es-

timate the model. According to the estimates, the decline in the exit rate over the

first 48 weeks of unemployment is largely due to the worsening composition of

surviving jobseekers. Furthermore, I find that an individual’s likelihood of exiting

unemployment decreases initially, then increases until unemployment benefits run

out, and remains steady thereafter. These findings are consistent with a standard

search model where returns to search decline early in the spell.
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I INTRODUCTION

A well-established empirical regularity is that the exit rate out of unemployment de-

creases over the spell of unemployment, except for a spike at the time of unemployment

insurance (UI) exhaustion. The decline in the exit rate may represent negative dura-

tion dependence, meaning that the longer a worker remains unemployed, the less likely

they are to exit unemployment. This would be true if employers discriminate against

long-term unemployed workers or if workers lose valuable skills and connections over

time, which would otherwise assist them in finding employment. However, workers

with different unemployment durations, who may appear similar to researchers, may

actually be quite different from each other. Factors such as employability, the urgency

to find a job, or the ability to secure employment may vary across individuals. Such het-

erogeneity across workers would imply that the observed exit rate declines even in the

absence of structural duration dependence. As more employable workers leave unem-

ployment, the remaining pool of unemployed individuals increasingly consists of those

who are less likely to exit unemployment.

Understanding how the likelihood of exiting unemployment evolves over the unem-

ployment spell and the extent of heterogeneity across workers is crucial for the design

of unemployment policies.1 Furthermore, the magnitude and direction of structural du-

ration dependence have implications for the incidence of long-term unemployment and

the speed of recovery from economic downturns (Pissarides, 1992). Given its signifi-

cance, a substantial body of literature has attempted to disentangle the sources of the

decline in the exit rate from unemployment. However, it has proven to be challenging

to do so using observational data.

In this paper, I develop and implement a novel approach to empirically disentangle

1See Shimer and Werning (2006), Pavoni and Violante (2007), Pavoni (2009), and Kolsrud et al.
(2018).
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the contributions of structural duration dependence and unobserved heterogeneity in

explaining the dynamics of the exit rate from unemployment. My approach relies on

leveraging variation in the length of notice workers receive from their employers before

being laid off. Using data from the Displaced Worker Supplement (DWS), I compare

workers with a notice period of more than two months (referred to as long notice) to

workers with a notice period of one to two months (referred to as short notice). To

ensure comparability across the two groups, I use inverse probability weighting (IPW)

to achieve balance on a comprehensive set of observable characteristics. The analysis

reveals that during the initial 12 weeks, the exit rate out of unemployment is 7 percent-

age points higher for long-notice workers. This difference is primarily due to a larger

proportion of long-notice workers transitioning directly to their next job without expe-

riencing a period of unemployment. However, beyond the first 12 weeks, the exit rate

for workers with the longer notice is actually lower.

I argue that the lower exit rate for long-notice workers at later durations is due to

the composition of this group becoming relatively worse as a larger proportion of in-

dividuals exit early in the spell. This indicates the presence of heterogeneity among

workers. In the presence of heterogeneity, such as differences in employability, those

who are more employable exit unemployment earlier. As more workers exit early from

the long-notice group, the surviving workers from this group will have a lower propor-

tion of highly employable workers compared to the short-notice group. Conversely, if

there is no heterogeneity, a larger proportion of workers exiting early from the long-

notice group will not alter the composition of long versus short-notice workers at later

durations. Consequently, there would be no discernible difference in the exit rates of

the two groups.2 Thus, the difference in the exit rates of short and long-notice workers

is indicative of the extent of underlying heterogeneity. This is the fundamental idea

behind my approach, which enables me to pin down the extent of heterogeneity and

2It is also possible that receiving a longer notice directly affects a worker’s exit probability, even at
later durations. I discuss this possibility below while addressing the robustness of my findings.
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estimate structural duration dependence.

I operationalize this intuition by formulating a Mixed Hazard (MH) model (Lancaster,

1979) in discrete time with multiple notice lengths. Within this framework, I specify the

probability of an individual exiting unemployment as a product of their unobservable

type, a function of observable factors, and a structural hazard that varies with the dura-

tion of unemployment and notice length. I show that structural duration dependence,

characterized by how the structural hazard varies with the duration of unemployment,

can be identified when two conditions hold. The first condition, commonly referred to

as unconfoundedness (Rosenbaum and Rubin, 1983), requires that the length of no-

tice is independent of the worker’s unobservable type when conditioned on observable

characteristics. The second condition states that the length of the notice period does

not impact the structural hazard at later durations of unemployment. In other words,

while a longer notice period before layoff may affect the probability of exiting at the

beginning of the unemployment spell, it does not influence the probability of exiting at

later durations.

Building on the identification result, I develop a method for estimating the model

using the Generalized Method of Moments (GMM). The estimation method utilizes mo-

ments weighted by the inverse of propensity scores to ensure that the distribution of

observable characteristics is similar across different notice lengths. Additionally, the

method incorporates right-censored duration data to account for spells that are still

incomplete at the time of the survey.

Relative to the existing literature on the identification and estimation of the Mixed

Hazard model, my approach goes further in several dimensions. Firstly, I do not impose

any functional form restrictions on the distribution of heterogeneity. This is crucial be-

cause misspecification of unobserved heterogeneity can significantly impact estimates

of structural duration dependence, as demonstrated by Heckman and Singer (1984).

Secondly, identification in my model stems from variation in a variable—the length of
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notice—that is exogenous conditional on observables and is assumed to affect the struc-

tural hazard in a way that aligns with economic intuition.3 The introduction of uncon-

foundedness in the Mixed Hazard framework is a novel innovation. Lastly, I provide a

root-n consistent estimator for the parameters of my model. My model is analogous to a

Mixed Hazard model with a time-varying exogenous variable, for which Brinch (2007)

provides a non-constructive proof of identification. The key differences here are the

assumption of unconfoundedness instead of exogeneity and the exposition being in dis-

crete time, the latter of which leads to a consistent estimator for the model’s parameters

via GMM.4 To the best of my knowledge, Alvarez et al. (2021) is the only other study

that utilizes moment conditions from a discrete version of the Mixed Hazard model and

constructs a GMM estimator. However, their identification result and estimator pertain

to multiple spell data.5

I estimate the model using weighted moments from the DWS data. The estimates

uncover substantial heterogeneity in individual exit probabilities. I find that a quar-

ter of the 43.6% decline in the observed exit rate over the first five months is due to

the changing composition of workers over the spell of unemployment. Moreover, after

the first five months, an individual worker’s exit probability increases until the time

of their unemployment benefit exhaustion and remains constant after. This is in con-

trast to the observed exit rate, which continues to decline even after benefit exhaustion.

Recently, researchers have proposed behavioral modifications to standard search the-

ory to explain this decline (Boone and van Ours, 2012; DellaVigna et al., 2017, 2021).

3Existing non-parametric identification results for the Mixed Hazard model rely on variation in an
exogenous variable that enters the structural hazard multiplicatively (Elbers and Ridder, 1982; Heckman
and Singer, 1984). The practical implementation of these results has been limited due to the challenge
of locating a variable that meets this criterion, as well as the absence of a convenient estimator. Another
approach to identification is using multiple spell data (Honoré, 1993). However, this approach assumes
that the unobserved characteristics of the jobseeker remain constant across repeated spells.

4Although the discrete-time model provides a simple, consistent estimator, it must be noted that one
of its disadvantages is invariance to the definition of periods.

5van den Berg (1990) also set up a discrete-time MPH model and study identification using cohort
effects; however, they use a maximum likelihood estimator on aggregate data for estimation.
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However, I highlight an alternative explanation: as a substantial number of individ-

uals exit unemployment right at the point of benefit exhaustion, the composition of

the remaining unemployed workers becomes significantly worse. This compositional

change contributes to the observed decline in the exit rate after benefit exhaustion. Fi-

nally, I calibrate a partial equilibrium search model with a non-stationary environment

(Mortensen, 1986; van den Berg, 1990) and show that my findings can be rationalized

in this framework with a decline in returns to search early in the spell.

Under the identifying assumptions specified for the Mixed Hazard model in my frame-

work, the lower exit rate among long-notice workers after the initial 12 weeks is at-

tributed to the presence of heterogeneity. However, two alternative explanations are

possible. First, there could be unobservable differences between long- and short-notice

workers. Second, a longer notice period may reduce a worker’s exit probability at later

durations. To address these concerns, in Appendix E, I relax the assumptions of my

model to allow for arbitrary differences between the two groups and for the structural

hazards at later durations to vary by notice length up to a specific constant. Although

I cannot show that all the parameters of this more general model are identified, I esti-

mate the model by varying the additional parameters and find the values that minimize

residuals.6 The estimated values that minimize the residuals suggest no mean differ-

ences in the unobservable heterogeneity distribution between the two groups nor any

difference in the structural hazard beyond the first 12 weeks. This points towards the

validity of the identifying assumptions employed in the analyses.

This paper contributes to the extensive literature on the dynamics of job-finding

over the spell of unemployment. Previous empirical studies utilizing the Mixed Haz-

ard model have had to make strong functional form assumptions due to challenges

with estimation. Consequently, the evidence on structural duration dependence from

these studies is mixed, as highlighted by Machin and Manning (1999) in their review.

6I verify that the numerical error function is locally convex in all cases.
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Recently, Alvarez et al. (2016) revived this strand of work by estimating a Mixed Hitting-

Time (MHT) model (Abbring, 2012) using Austrian social security data. They focus on

a selected sample of workers with multiple unemployment spells and are able to esti-

mate the extent of heterogeneity across workers that is fixed between spells. A relative

advantage of my approach is that it captures spell-specific heterogeneity.7 Another re-

lated study, Mueller et al. (2021), utilizes variation in expectations about job-finding

from survey data to pin down variation in actual job-finding rates. While both of these

studies also document substantial heterogeneity across jobseekers, my estimator for

structural duration dependence is flexible enough to capture changes around UI ex-

haustion.8

Given the challenges with estimating structural duration dependence, researchers

have instead focused on assessing its determinants. Kroft et al. (2013) conduct an au-

dit study and find that the likelihood of receiving a callback for an interview declines

with the duration of unemployment. However, they note that since they cannot measure

worker behavior or employers’ ultimate hiring decisions, their estimates only shed light

on one determinant of structural duration dependence.9 Several papers have also doc-

umented how search effort or reservation wages evolve over the spell of unemployment

(Krueger and Mueller, 2011; Marinescu and Skandalis, 2021; DellaVigna et al., 2021).

The evidence provided in this paper suggests that, while call-back rates or other factors

affecting returns to search matter initially, a worker’s optimizing behavior determines

the likelihood of exiting unemployment at later durations.

7For instance, a worker’s savings or UI eligibility may change over the months or years by the time
this worker becomes unemployed again.

8Alvarez et al. (2016) utilizes an optimal-stopping model; a worker finds a job at an optimal stopping
time when a Brownian motion with drift hits a barrier. Their model generates an inverse Gaussian distri-
bution of duration for each worker. Mueller et al. (2021) restrict the structural hazard to be monotonic
over the spell of unemployment, and their estimator yields a practically flat hazard.

9Using a structural model, Jarosch and Pilossoph (2019) argue that if employers statistically discrim-
inate against those with longer durations, then a decline in callback rates only has a marginal effect on
workers’ exit rates.

7



Finally, a substantial body of literature highlights a spike in exit rates at UI exhaus-

tion, where exit rates increase until benefit exhaustion and decline thereafter.10 While

the initial increase is consistent with standard search theory, the subsequent decline is

not. My estimates reproduce the increase in individual exit probabilities leading up to

UI exhaustion but do not find evidence of a decline thereafter. Boone and van Ours

(2012) propose storable job offers as an explanation for the spike, while DellaVigna

et al. (2017) argue that search models incorporating reference dependence predict a

decrease in search effort after benefit exhaustion. My estimates suggest that the de-

cline in the exit rate after UI exhaustion can be attributed to a shift in the composition

of surviving workers, as a significant proportion of workers exit unemployment right at

benefit exhaustion. However, the individual exit probability remains constant, consis-

tent with the predictions of standard search models.

II CONTEXT AND DATA

In this section, I describe the institutional setting and the data and document how

the exit rate out of unemployment varies with the length of notice.

II.A Institutional Details

Under certain circumstances, US employers are required to give notice of layoff. The

federal WARN Act mandates that employers with 100 or more full-time employees pro-

vide a 60-day advance notice for plant closings and mass layoffs. A plant closing is

defined as the shutdown of a site or units within it that results in 50 or more employees

losing their jobs within a 30-day period, while a mass layoff is the loss of employment

for 500 or more employees during a 30-day period, or 50-499 employees if they con-

10Katz and Meyer (1990) first documented the spike in exit rates at benefit exhaustion in the context
of the US. Some recent papers that document this pattern using administrative data are DellaVigna et al.
(2017) (Hungary), Ganong and Noel (2019) (US), and Marinescu and Skandalis (2021) (France).
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stitute one-third or more of the employer’s active workforce. The law only applies to

layoffs exceeding six months, excluding discharges for cause, voluntary departures, or

retirements. Some states, such as California, New York, and Illinois, have implemented

their own WARN laws that expand the coverage of employment losses beyond what the

federal law requires.11

When it comes to unemployment insurance (UI), US workers who are terminated

without cause are typically eligible to receive benefits for a limited duration. Although

the UI program is a federal program, each state sets its own benefit levels and dura-

tions. Eligibility and benefits may depend on a combination of earnings, hours worked,

or weeks worked during a base period, depending on the specific rules of the state’s

UI program. Typically, this base period consists of the first four out of five completed

calendar quarters preceding the claim filing date. In most states, the maximum period

for receiving benefits is 26 weeks. Nine states have a uniform benefit duration of 26

weeks, while the benefit durations in the remaining states vary depending on the ap-

plicant’s earnings history. Additionally, a program for extended benefits has been in

place since a 1970 amendment to the Federal Unemployment Tax Act (FUTA), which

can be triggered by the state unemployment rate. Temporary programs have also been

implemented to extend benefits during recessions.

II.B Data Description and Sample Construction

I use data from the Displaced Worker Supplement (DWS) for the years 1996-2020.

DWS is fielded biennially along with the basic monthly Current Population Survey (CPS)

in January or February. The survey is administered to individuals who report having

lost or left a job within the past three years due to a plant closure, their position being

abolished, or having insufficient work at their previous employment. Apart from details

11It is not possible to exploit policy variation across states, say in a differences-in-difference framework,
due to confounding pre-trends; both California and New York implemented these laws in the aftermath
of a national recession.

9



on workers’ lost and current jobs, DWS also collects the length of the notice period

workers received before being laid off and the length of time they took to find another

job.

For the analysis, the sample is limited to individuals aged 21 to 64 years old. It ex-

cludes individuals who expected to be recalled to their previous jobs and those whose

lost job was self-employment. To focus on workers who lost stable, permanent employ-

ment, the sample only includes individuals who were employed full-time for at least six

months at their previous job and had health insurance benefits provided by that em-

ployer. The question on notice length in the DWS is categorical and specifies whether

someone did not receive a notice or received a notice of <1 month, 1-2 months, or >2

months. For individuals who did not receive a notice, it is uncertain whether they were

displaced or quit their jobs voluntarily, so they are excluded from the sample.12 Addi-

tionally, I exclude individuals with less than a month’s notice from the main analysis,

as they significantly differ from the other two groups in observable characteristics, cast-

ing doubt on the validity of the unconfoundedness assumption. Nevertheless, I present

results including these groups in Section V.B as a robustness check. Section C.1 in the

Appendix provides additional details on data construction. Specifically, Table C1 sum-

marizes the sample selection procedure, and Table C2 compares the characteristics of

the workers in my sample to all workers in the CPS and DWS.

Throughout the remainder of the text, I use the term long notice interchangeably to

refer to a notice period of more than two months and short notice to refer to a notice

period of 1-2 months. Table 1 presents the summary statistics separately for workers

with short and long notice in the sample. Columns (1) and (2) display the raw averages

for the sample, revealing notable differences between the two groups. Workers with

12As noted by Farber (2017), while the DWS seeks to capture separations caused by economic dif-
ficulties within firms, it is hard to distinguish layoffs from voluntary quits. This is because financially
distressed firms might reduce hours or wages rather than lay off workers, prompting some workers to
voluntarily quit in search of better opportunities.
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TABLE 1: DESCRIPTIVES BY NOTICE LENGTH

Unbalanced Balanced
Short Long Diff. Short Long Diff.
(1) (2) (2)-(1) (3) (4) (4)-(3)

Age 42.44 43.57 1.13*** 43.04 43.01 -0.03
(0.24) (0.22) (0.33) (0.24) (0.22) (0.33)

Female 0.45 0.46 0.02 0.46 0.46 -0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Married 0.59 0.63 0.04** 0.61 0.61 -0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Black 0.10 0.09 -0.01 0.10 0.09 -0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

College Degree 0.41 0.39 -0.03* 0.40 0.40 -0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Plant Closure 0.46 0.62 0.16*** 0.54 0.54 -0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Union Membership 0.15 0.16 0.01 0.15 0.15 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

In Metro Area 0.84 0.82 -0.01 0.83 0.83 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Years of Tenure 7.12 9.18 2.06*** 8.25 8.21 -0.04
(0.15) (0.16) (0.22) (0.16) (0.15) (0.22)

Log Earnings 6.54 6.56 0.03 6.54 6.55 0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

Observations 1959 2216 1959 2216

Note: The sample consists of respondents from the Displaced Worker Supplement (DWS) for the years
1996-2020, who were between the ages of 21 to 64 , who had worked full-time for at least six months
at their previous job, received health insurance from their former employer, and did not expect to be re-
called. Short notice refers to a notice period of 1-2 months, while long notice refers to a notice period
exceeding two months. Columns (1) and (2) present raw averages for the sample, while columns (3)
and (4) show weighted averages, where the weights correspond to the inverse of the estimated proba-
bilities of receiving short or long notice.
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longer notice tend to be older and are more likely to be married. Additionally, workers

laid off during plant closures are more likely to receive longer notice, potentially due

to compliance with the WARN law. Workers with longer notice also tend to have longer

job tenure. However, there are no notable differences in earnings for the two groups.

To isolate the impact of notice from these additional correlates, which may affect the

probability of exiting unemployment, I reweight the sample using inverse propensity

score weighting. I use a logistic regression model to predict the likelihood of receiving

a longer notice based on several covariates. These covariates consist of age, gender,

marital status, race, education, location characteristics, the reason for displacement,

year of displacement, industry and occupation of the lost job, as well as union status,

tenure, and earnings at the lost job. I then utilize the propensity scores to assign weights

to the observations. Specifically, individuals with the long notice are assigned a weight

of 1/p̂(X i), where p̂(X i) is the estimated probability of receiving the long notice from the

regression model for an individual with covariates X i. On the other hand, individuals

who received the short notice are assigned a weight of 1/(1− p̂(X i)).

The summary statistics for the reweighted sample are presented in columns (3) and

(4) of Table 1. After reweighting, the observable differences between the two groups

disappear, indicating that the weights effectively minimize the observed disparities. Sec-

tion C.2 in the Appendix provides additional details on propensity score estimation.

Figure C1 demonstrates a high degree of overlap in the estimated propensity score

distributions between long and short-notice workers. Additionally, Figures C2 and C3

depict the balance of the weighted sample with respect to the displacement year and

industrial and occupational composition, respectively.

II.C Distribution of Unemployment Duration

In this section, I explore how a longer notice impacts the exit rate over the spell

of unemployment. Workers who receive a layoff notice may start searching for a job
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before separating from their previous employer. In this case, some of these workers may

secure a new job during the notice period, thus avoiding any period of unemployment.

In the data, 14.7% of the workers with the short layoff notice report no duration of

unemployment. Since workers with longer notice periods have more time to search for

a new job while still employed, we expect their chances of avoiding unemployment to

be even greater.

In Table 2, panel A, I examine the relationship between receiving a long notice and

reporting an unemployment duration of 0. Columns (1) and (2) present estimates from

unweighted regressions, while columns (3) and (4) present weighted regression esti-

mates using the weights described in the previous section. Additionally, columns (2)

and (4) include a comprehensive set of controls identical to the ones used to generate

the weights. The table shows that the impact of a lengthier notice on the exit proba-

bility is reduced after accounting for observable characteristics of the separation. The

coefficient in column (2) indicates that individuals who receive a longer notice are 8

percentage points more likely to avoid unemployment. Similar estimates are observed

in columns (3) and (4) as well. Notably, the inclusion of controls in column (4) does

not lead to a change in the coefficient, indicating that the weighting has effectively

achieved balance in terms of the covariates across the two groups. In panel B of Table

2, I present a similar regression analysis, but this time using an indicator for exiting

unemployment within the first 12 weeks. The results show that the exit rate out of

unemployment is around 7 percentage points higher for long-notice workers compared

to the short-notice group.

To examine how the exit rate varies with the length of notice over the spell of unem-

ployment, I bin unemployment duration into 12-week intervals.13 Figure 1 presents the

exit rate and the survival rate separately for the long- and short-notice workers over the

13Exit rate is defined as the ratio of individuals who found a job during a specific interval to those who
were jobless at the beginning of the interval. See Figure C5 in the Appendix for the presentation of data
with alternative binning definitions.
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TABLE 2: OBSERVED EXIT RATE – EARLY IN THE SPELL

(1) (2) (3) (4)

PANEL A. I{UNEMPLOYMENT DURATION = 0 WEEKS}

> 2 month notice 0.094*** 0.080*** 0.077*** 0.077***
(0.012) (0.012) (0.013) (0.013)

PANEL B. I{UNEMPLOYMENT DURATION ≤ 12 WEEKS}

> 2 month notice 0.078*** 0.074*** 0.070*** 0.070***
(0.015) (0.016) (0.016) (0.016)

Controls No Yes No Yes
Weights No No Yes Yes

Observations 4175 4175 4175 4175

Note: The table presents estimates from linear regression models, where the main independent variable
is an indicator variable that takes a value of 1 if the individual received a notice of more than 2 months
and 0 if they received a notice of 1-2 months. The dependent variable is an indicator for reporting an
unemployment duration of 0 weeks (Panel A) or less than 12 weeks (Panel B). The weights are gener-
ated using inverse probability weighting (IPW). Robust standard errors are reported in the parenthesis.

spell of unemployment. Note that the rates are calculated using the weighted sample to

ensure that the comparison is between similar groups of workers who received different

lengths of notice.14 Approximately 56.6% of individuals with a long notice exit within

the first 12 weeks, while 48.7% of those with a short notice do the same. However, over

the course of unemployment, individuals with shorter notice periods catch up, resulting

in almost identical survival rates for both groups by the 48th week of unemployment.

As shown in panel A of Figure 1, for all durations beyond 12 weeks, individuals with

shorter notice periods have a higher exit rate compared to those with longer notice

periods.

I interpret the higher exit rate for short-notice workers beyond the initial 12 weeks

14Appendix D presents the unweighted exit rates and corresponding estimates obtained from the Mixed
Hazard model. There is little qualitative difference between unweighted and weighted quantities, sug-
gesting that differences in other characteristics of the two groups are not driving the results.

14



FIGURE 1: EXIT AND SURVIVAL RATE — LATER IN THE SPELL
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Note: Short notice refers to a notice of 1-2 months, and long notice refers to a notice of more than 2
months. Panel A presents the weighted proportion of individuals exiting unemployment in each interval
amongst those who were still unemployed at the beginning of the interval. Panel B presents the weighted
proportion of individuals who are unemployed at the beginning of each interval. Error bars represent
90% confidence intervals.

as evidence for heterogeneity across workers. When workers are heterogeneous, those

with better chances of exiting unemployment do so earlier. Given that a larger propor-

tion of long-notice workers exit earlier, the long-notice group will have a lower pro-

portion of individuals with higher exit probabilities, which is reflected in the (average)

exit rate. It is important to note that this interpretation holds under the condition that

longer notice does not directly reduce the probability of exiting unemployment at later

durations. In the following section, I formally outline the assumptions necessary to

identify heterogeneity and duration dependence in a Mixed Hazard model, and I also

discuss the plausibility of these assumptions and potential violations.
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III ECONOMETRIC FRAMEWORK

This section illustrates how variation in notice length can be used to identify structural

duration dependence. Specifically, I set up a Mixed Hazard model in discrete time and

specify the assumptions under which the key components of this model are identified.

The model and assumptions are outlined in Section III.A, while the main identification

result is presented in Section III.B. The intuition behind identification is explained in

Section III.C. All proofs are presented in Appendix A.

III.A Mixed Hazard Model in Discrete Time

Prior to being laid off, workers are given a notice period of length L, where L takes

discrete values on some support L . Workers are heterogeneous, each possessing an

unobservable fixed type ν, characterized by the cumulative distribution F(.). Addition-

ally, workers vary based on pre-notice observables, denoted by X , with the distribution

of X given by FX (.). These characteristics may include details about the job, the worker,

or the circumstances of the layoff. Using potential outcome notation (Rubin, 1974), let

DL denote the realized unemployment duration under notice L. DL is a random vari-

able that takes values in {1, 2,3, . . .}. Let’s begin by assuming that the econometrician

observes D =
∑

ℓ∈L DℓI{L = ℓ}, which means that the potential duration under notice

ℓ is observed among those who receive notice ℓ.15 Right-censored duration data will be

incorporated later.

Finally, for a set of conditioning variables Υ , define the hazard function h(.) as:

h(d|Υ ) = Pr(D = d|D ≥ d,Υ )

Thus, h(d|ν, L, X ) represents the probability that an individual of type ν with observed

characteristics X will exit unemployment at duration d, given that the individual has

15Throughout the text, I(.) is used to denote the indicator function.
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not yet exited and had received notice L.

We are interested in understanding how individual exit probabilities h(d|ν, L, X ) evolve

over the duration of unemployment; this is referred to as structural duration depen-

dence. However, these individual probabilities are not observed in the data. Instead,

we can utilize the observed unemployment durations to determine the timing of each

worker’s exit from unemployment. Specifically, we can at most infer the exit rate

h(d|L, X ), which represents the proportion of individuals exiting at a specific duration

relative to those who have remained up to that point in the group with notice L and

observable characteristics X .

It is worth noting that, according to the definition of the hazard function, we have:

h(d|L, X ) = E[h(d|ν, L, X )|D ≥ d, L, X ]

The above reformulation clarifies that the exit rate h(d|L, X ) captures the average haz-

ard for individuals who have survived until duration d rather than all individuals. This

is what makes identifying structural duration dependence from observed exit rates chal-

lenging. To make the problem more manageable, the Mixed Hazard model introduces

additional structure by assuming that the individual exit probabilities h(d|ν, L, X ) can

be expressed as the product of the individual’s unobserved type ν and a structural com-

ponent ψL(d, X ).16

Assumption 1. (Mixed Hazard) An individual’s exit probability at duration d is given by:

h(d|ν, L, X ) =ψL(d, X )ν

where the structural hazard ψL(d, X ) ∈ (0,∞) and worker’s type ν ∈ (0, ν̄] with ν̄ =

16Lancaster (1979) expanded the proportional hazard model (Cox, 1972) to incorporate unobserved
heterogeneity. His Mixed Proportional Hazard (MPH) model represented the hazard rate as a product of a
regression function, a structural hazard that varies with duration, and the worker’s unobserved type. The
Mixed Hazard model formulated here is similar to Lancaster’s MPH model but permits non-proportional
effects of observable characteristics and distinguishes the length of notice from other observed variables.
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1/maxd,l,X {ψl(d, X )}.

The structural hazard ψL(d, X ) is common to all individuals with observable charac-

teristics X and a notice period of length L, but it varies with the duration of unemploy-

ment. The restrictions on the structural hazard and the support of ν in Assumption 1

guarantee that individual exit probabilities lie between 0 and 1. Under Assumption 1,

workers with lower values of type ν have lower exit probabilities at all durations. Con-

sequently, low-type workers tend to remain unemployed for longer durations. Given

that the observed exit rate reflects the average exit probability of surviving workers,

it will decline more steeply than individual exit probabilities over the unemployment

spell. The following proposition formally states this result.

Proposition 1. Under Assumption 1, the exit rate h(d|L, X ) can be expressed as follows:

h(d|L, X ) =ψL(d, X )E(ν|D ≥ d, L, X )

Moreover, the average type of workers who survive until d, E(ν|D ≥ d, L, X ), decreases

with the unemployment duration d.

This proposition clarifies why identifying the structural hazard ψL(d, X ) is challeng-

ing. The exit rate h(d|L, X ) is impacted by both the structural duration dependence

ψL(d, X ) and the changing worker composition over the unemployment spell captured

by E(ν|D ≥ d, L, X ). If the observed exit rate h(d|L, X ) declines over the spell of un-

employment, it is not possible to distinguish between the scenario where there is no

structural duration dependence but significant worker heterogeneity causes the aver-

age type of workers and the observed exit rate to decline, and the scenario where there

is no worker heterogeneity, but the structural hazard declines over the spell of unem-

ployment. Both of these scenarios would be consistent with the observed decline in

h(d|L, X ). Hence, structural duration dependence is not identified from exit rates in

the model formulated so far.

I now introduce two additional assumptions under which variation in notice length
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leads to the identification of structural duration dependence. The first assumption is

conditional independence, which states that the length of notice is independent of the

worker’s unobservable type given observable characteristics. In other words, for work-

ers with similar observable characteristics, there is no systematic difference in the length

of notice given to workers with different unobservable types.17

Assumption 2. (Conditional Independence) The length of notice L is independent of the

worker’s unobservable type ν, given observable characteristics X , i.e., L ⊥ ν|X .

This assumption ensures that differences in the exit rates h(d|L, X ) for various notice

lengths are only due to the direct effect of the notice on individual exit probabilities

rather than due to differences in the types of workers who receive different lengths

of notice. In other words, the assumption implies that for any notice ℓ, h(d|ℓ, X ) =

E[h(d|ν,ℓ, X )|Dℓ ≥ d, X ]. The second assumption, referred to as stationarity, states

that the length of notice does not affect an individual’s exit probability after the first

period.

Assumption 3. (Stationarity) For all L, X , and d > 1,

ψL(d, X ) =ψ(d, X )

The rationale for Assumption 3 is that workers with longer notice periods have more

time to search for a new job before separating from their previous employer, potentially

increasing their likelihood of finding a job at the beginning of their unemployment spell.

However, suppose duration dependence in job-finding is caused by factors such as hu-

man capital depreciation due to prolonged unemployment or employers discriminating

against long-term unemployed workers. In that case, a worker’s exit probability later

in the spell should only vary with the unemployment duration and not with the length

17In Appendix E, I provide estimates from a model that permits the underlying type distribution to
differ across various notice lengths instead of assuming conditional independence.
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of notice received at the onset of the spell. Given that I bin unemployment duration in

12-week intervals, this assumption translates to the length of notice only impacting the

probability of exit within the first 12 weeks and not after that.

More generally, Assumption 3 implies that individual exit probabilities vary only with

the duration of unemployment and not with time elapsed since the start of the job

search.18 This assumption would be violated if time spent searching increases or de-

creases an individual’s likelihood of exiting unemployment. For instance, if workers

learn while searching and become better at job search (Burdett and Vishwanath, 1988;

Gonzalez and Shi, 2010), then those with longer notice would have a higher hazard

even beyond the initial period. On the other hand, time spent searching may decrease

the exit probability if workers first apply to all jobs in stock but subsequently only apply

to newly posted jobs (Coles and Smith, 1998).19 In Appendix E, I investigate whether

Assumption 3 is violated by estimating a more general model where structural hazards

are allowed to vary with the length of notice beyond the initial period, and I do not find

evidence against it.

III.B Identification Results

Theorem 1. Under Assumptions 1–3, for any ℓ,ℓ′ with ψℓ(1, X ) ̸= ψℓ′(1, X ) and some

integer D̄, the structural hazards {ψℓ(1, X ),ψℓ′(1, X ), {ψ(d, X )}D̄d=2} and the conditional

moments of the type distribution {E(νk|X )}D̄k=1 are identified up to a scale from the condi-

tional exit rates {h(d|ℓ, X ), h(d|ℓ′, X )}D̄d=1.

18This assumption aligns with a large class of search models, including those that involve non-
stationarity. For instance, the model proposed by Lentz and Tranæs (2005), in which workers start
searching harder over time as their savings run down, would be consistent with this assumption as sav-
ings only start depleting once unemployed.

19Another possibility for why individual exit probability may decline with time spent searching could
be that workers get discouraged over time and stop trying. However, this seems unlikely since 85% of
individuals in the sample eventually find employment after displacement, and among those who do not,
none report being out of the labor force.
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The above theorem establishes that if the first-period hazard varies for two different

notice lengths, we can identify the structural hazards up to D̄ and the first D̄ moments

of ν conditional on X using the conditional exit rates for both notice lengths up to

D̄. A direct implication of this result is that if X does not enter the structural hazard

and we assume independence instead of conditional independence, we can identify the

model using exit rates unconditional on X . The following corollary presents this result

formally.

Corollary 1. Assume the following conditions hold:

(i) h(d|ν, L) =ψL(d)ν, where ψL(d) and ν are bounded to ensure h(d|ν, L) ∈ (0,1)

(ii) L is independent of ν

(iii) ψL(d) =ψ(d) for d > 1

Then for any ℓ and ℓ′, with ψℓ(1) ̸= ψℓ′(1) and some integer D̄, the structural hazards

{ψℓ(1),ψℓ′(1), {ψ(d)}D̄d=2} and the moments of the type distribution {E(νk)}D̄k=1 are iden-

tified up to a scale from the exit rates {h(d|ℓ), {h(d|ℓ′)}D̄d=1

Neither of the two results mentioned above is ideal for application to the data. The

first result has a limitation in that h(d|L, X ) is only well-defined for discrete values of

X , and even then, it may be imprecisely estimated if each bin size is not large enough.

On the other hand, the second result allows us to use duration distributions that are

unconditional on X , but it imposes a stronger restriction of unconditional independence,

which may not hold in the data.

To address these limitations, I present an additional result below, which allows con-

trolling for observables more flexibly. Specifically, suppose observable characteristics

enter the structural hazard proportionally, as in the MPH model. In that case, the

model’s parameters are identified under conditional independence using inverse propen-

sity score weighted (IPW) exit rates, denoted by hw(d|L).20 Specifically, hw(d|L) is de-

fined as follows:

20Note that the length of notice still enters the structural hazard non-proportionally.
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hw(d|L) = E
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Pr(D = d|ν, L, X )
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where pℓ(X ) = Pr(L = ℓ|X ).

In words, the IPW exit rate hw(d|L) is computed by using weighted averages of in-

dividual probabilities, where the weights are equal to the probability of the individual

receiving a specific notice length based on their observable characteristics X . As shown

in the context of treatment effects (Rosenbaum, 1987), inverse propensity score weight-

ing leads to the elimination of bias due to selection into treatment based on observable

characteristics. This is because it gives less weight to individuals with characteristics

that lead to a higher treatment probability, thereby readjusting the sample to reflect

the general population more accurately. Therefore, the variation in hw(d|L) by notice

length will capture the direct effect of notice on exit rates without being confounded

with the effects of observable characteristics that correlate with notice length.

Put another way, for any notice length ℓ, while the unweighted exit rate h(d|ℓ) reflects

E[h(d|ν,ℓ, X ) | Dℓ ≥ d,ℓ], the IPW adjusted exit rate captures E[h(d|ν,ℓ, X ) | Dℓ ≥ d].

This fact is formally shown in the proof of the subsequent proposition, which presents

the identification result using weighted exit rates. It is important to reiterate that, in this

context, we must assume that X enters the structural hazard proportionally, such that

ψL(d, X ) = ψL(d)φ(X ). Consequently, it is useful to define θ (X ,ν) = φ(X )ν, which

now represents the combined type of workers based on both observed and unobserved

characteristics.

Proposition 2. Assume that Assumptions 1–3 are satisfied, and also that the additional

conditionsψL(d, X ) =ψL(d)φ(X ) and 0< pL(X )< 1 for all L, X are met. Then for any ℓ

and ℓ′, withψℓ(1) ̸=ψℓ′(1) and some integer D̄, the structural hazards {ψℓ(1),ψℓ′(1), {ψ(d)}D̄d=2}

and the moments {E(θ (X ,ν)k)}D̄k=1 are identified up to a scale from the weighted exit rates

{hw(d|ℓ), {hw(d|ℓ′)}D̄d=1

The identification results discussed thus far rely on observing completed unemploy-
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ment durations. However, as is typical in many datasets, some individuals are still

unemployed at the time of the DWS survey. For the unemployed individuals, we ob-

serve how long they have been unemployed, but we do not know if and when they will

find a job. I now extend Proposition 2 to incorporate right-censored unemployment

durations.

Let Dc denote the censoring time, which is the time elapsed from when an individual

becomes unemployed to the time of the survey. For individuals who have already exited

unemployment at the time of the survey, we observe their completed unemployment

duration D in the data. However, we only observe the censoring time Dc for currently

unemployed individuals. Specifically, for each individual, we observe D̃ = min{D, Dc}

along with an indicator variable for whether the individual was censored or not, de-

noted by C = I{Dc < D}.

Intuitively, the exit rate at duration d can be calculated from observed durations as

the proportion of individuals who find a job at d, indicated by D̃ = d and C = 0, among

those whose observed duration D̃ is at least equal to d. Since we are limiting ourselves

to individuals whose observed duration is at least d, it means that everyone in this

group has remained unemployed up to duration d. However, this approach excludes

individuals who are censored before d, among whom some may have also remained

unemployed until d. Therefore, the exit rate calculated in this manner captures the exit

rate for those who are censored after d. Mathematically,

h̃(d|Υ ) = Pr(D̃ = d, C = 0|D̃ ≥ d,Υ ) = Pr(D = d|D ≥ d, Dc ≥ d,Υ )

The second equality in the above expression follows from the definition of D̃ and C .

To incorporate inverse propensity score weighting while calculating exit rates based

on observed durations and the censoring indicator, we can proceed as before and define

the IPW exit rate using observed durations as follows:

h̃w(d|L) = E
�

Pr(D̃ = d, C = 0|ν, L, X )
pL(X )

�

�

�

�

L

�

�

E
�

Pr(D̃ ≥ d|ν, L, X )
pL(X )

�

�

�

�

L

�
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The proposition below states that, under the assumptions specified in Proposition 2, the

structural hazards are identified from h̃w(d|L) with the additional assumption Dc ⊥ L |

X . Additionally, if we also assume that Dc is independent of both X and ν, moments of

θ (X ,ν) are also identified. In my application, these assumptions are generally innocu-

ous, as the censoring time is determined by when an individual was surveyed in DWS,

which should not correlate with individual outcomes.

Proposition 3. Assume that the assumptions stated in Proposition 2 hold and additionally

Dc ⊥ L|X . Then for any ℓ and ℓ′, with ψℓ(1) ̸=ψℓ′(1) and some integer D̄, the structural

hazards {ψℓ(1),ψℓ′(1), {ψ(d)}D̄d=2} are identified up to a scale from the weighted exit

rates {h̃w(d|ℓ), {h̃w(d|ℓ′)}D̄d=1. Furthermore, if Dc ⊥ ν and Dc ⊥ X , then the moments

{E(θ (X ,ν)k)}D̄k=1 are also identified.

Proposition 3 is the main proposition utilized in the application in the paper. Section

IV builds a GMM estimator based on this identification result.

III.C Intuition for Identification

In this section, I elucidate the intuition behind the identification result. To simplify

the explanation, I focus on the case without observable characteristics, as incorporating

them does not provide any additional insights regarding identification.21 In this model,

an individual worker’s exit probability is given by h(d|ℓ,ν) =ψℓ(d)ν and ν is indepen-

dent of L. Note that independence implies f (ν|L) = f (ν). For brevity, let us denote

the first and second moments of ν by µ1 = E(ν) and µ2 = E(ν2), respectively. It is

worth noting that the variance of ν, given by var(ν) = µ2 − µ2
1, captures the extent of

heterogeneity across workers.

To see why the identification result holds, note that the exit rate in the first period is

21A similar exposition can also be found in van den Berg and van Ours (1996), where the authors
discuss identification utilizing calendar-time effects.
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given by h(1|ℓ) =ψℓ(1)µ1 and the exit rate at d = 2 is given by:

h(2|ℓ) =
Pr(D = 2|ℓ)
Pr(D ≥ 2|ℓ)

=ψ(2)
�

µ1 −ψℓ(1)µ2

1−ψℓ(1)µ1

�

=ψ(2)µ1

�

1− h(1|ℓ)(µ2/µ
2
1)

1− h(1|ℓ)

�

The third equality in the above equation follows from ψℓ(1) = h(1|ℓ)/µ1. In the

presence of heterogeneity, the variance of ν is greater than zero, which means that

µ2/µ
2
1 > 1. Therefore, based on the expressions for h(1|ℓ) and h(2|ℓ), we can observe

that h(2|ℓ)/h(1|ℓ) will always be smaller than ψ(2)/ψℓ(1). Furthermore, the greater

the variance of ν (i.e., the more heterogeneity across workers), the larger µ2/µ
2
1 will

be, and the more distant h(2|ℓ)/h(1|ℓ) will be from ψ(2)/ψℓ(1). This occurs because

greater heterogeneity across workers implies that the composition of workers from the

first to the second period changes more drastically. For instance, in the absence of

heterogeneity across workers where µ2/µ
2
1 = 1, the composition across both periods is

unchanged, and thus h(2|ℓ)/h(1|ℓ) =ψ(2)/ψℓ(1).

If we knew the extent of heterogeneity across workers as captured by µ2/µ
2
1, we

could determine how the composition changes from the first to the second period and

estimate the structural duration dependence ψ(2)/ψℓ(1) from the observed duration

dependence h(2|ℓ)/h(1|ℓ). The variation in notice lengths allows us to learn about the

underlying heterogeneity and estimate structural duration dependence. To understand

why this is the case, note that for two lengths of notice ℓ and ℓ′, the following expression

holds:
h(2|ℓ)
h(2|ℓ′)

=

�

1− h(1|ℓ)(µ2/µ
2
1)

1− h(1|ℓ)

�

Á

�

1− h(1|ℓ′)(µ2/µ
2
1)

1− h(1|ℓ′)

�

Assuming without loss of generality that h(1|ℓ′)> h(1|ℓ), we can see from the above

expression that then h(2|ℓ)/h(2|ℓ′) ≥ 1. This is because more individuals with notice

length ℓ′ leave in the first period, leading to a worse composition for that group in the

second period. Furthermore, when the variance across workers is higher, h(2|ℓ) will be

further above h(2|ℓ′). Thus, the difference in exit rates among workers with different

notice lengths provides information about the degree of heterogeneity, and we can use
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the above expression to compute µ2/µ
2
1. Once we know µ2/µ

2
1, we can plug that back

into the expression for h(2|ℓ)/h(1|ℓ) and estimate the structural duration dependence

ψ(2)/ψℓ(1). In summary, the difference in exit rates at duration d = 2 across notice

lengths reflects differences in the composition of remaining workers. Therefore, com-

paring exit rates of workers with different notice lengths can provide insights into the

extent to which underlying heterogeneity impacts exit rates. A similar argument applies

to identifying structural hazards beyond the second period.22

IV ESTIMATION

Generalized Method of Moments (GMM). Using the identification result presented

in Proposition 3, we can use the Generalized Method of Moments (GMM) to construct

a consistent estimator for the structural hazards and moments of the heterogeneity dis-

tribution. Since the model is identified only up to scale, I normalize the first moment

by setting E[θ (X ,ν)] = 1. With J possible notice lengths, the vector of unknown pa-

rameters is given by Θ = {{ψℓ(1)}Jℓ=1, {ψ(d)}D̄d=2, {E[θ (X ,ν)k]}D̄k=2} and has a total of

2(D̄− 1) + J unknown parameters.

Now, for each individual i, define the following moment condition:

mi(ℓ, d;Θ) = I{Li = ℓ} ·
�

I{D̃i = d}I{Ci = 0}
pℓ(X i)

− h̃w(d|ℓ;Θ) ·
I{D̃i ≥ d}

pℓ(X i)

�

Given the definition of h̃w(d|ℓ;Θ), it follows that E[mi(ℓ, d;Θ)] = 0, as reasoned in

Section A.7. We can now stack moment conditions pertaining to different notice lengths

and durations in one vector, denoted by mi(Θ) = {{mi(ℓ, d,Θ)}D̄d=1}
J
ℓ=1. Observe that

22To understand why higher moments determine the hazard at later durations, we can consider how the
composition of workers changes from d = 2 to d = 3. This change depends on the level of heterogeneity
across workers at the start of d = 2. If the distribution of heterogeneity has a positive skew, the variance
among individuals who survive to d = 2 would be lower than that among individuals at the start of d = 1.
This is because the few individuals with a high likelihood of exiting unemployment would have already
left, reducing the variance among surviving workers.
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mi(Θ) contains J× D̄ moment conditions. As shown in Proposition 3, our parameters of

interest are identified from these moment conditions as long as J > 1. This condition

also ensures that the number of moments is equal to or greater than the number of

parameters.

The corresponding sample average to E[mi(ℓ, d;Θ)] can be written as:

m̂(ℓ, d;Θ) =
1
n

n
∑

i=1

mi(ℓ, d;Θ) = ĥnum(d|ℓ)− h̃w(d|ℓ;Θ) · ĥden(d|ℓ)

Here, n is the sample size, and ĥnum(d|ℓ) and ĥnum(d|ℓ) are defined as follows:

ĥnum(d|ℓ) =
1
n

n
∑

i=1

I{Li = ℓ}I{D̃i = d}I{Ci = 0}
pℓ(X i)

, ĥden(d|ℓ) =
1
n

n
∑

i=1

I{Li = ℓ}I{D̃i ≥ d}
pℓ(X i)

Note that ĥ(d|ℓ) = ĥnum(d|ℓ)/ĥden(d|ℓ) represents the sample counterpart to h̃w(d|ℓ;Θ).

As before, stack the sample moments in a single vector m̂(Θ), such that m̂(Θ) =
∑n

i=1 mi(Θ)/n.

The GMM estimator Θ̂ is then given by: Θ̂ = argmaxΘ m̂(Θ)′Ŵm̂(Θ). When the

model is just-identified, Ŵ is given by the identity matrix. In the case of over-identification,

the efficient weighting matrix is given by Ŵ = Ω̂−1, where Ω̂ =
�

1
n

∑n
i=1 mi(Θ̂)mi(Θ̂)′

�

.

Using the two-step estimation process, we can compute Θ̂. The asymptotic distribution

of this estimator is given by
p

n(Θ̂−Θ)→ N(0, (M̂ ′Ω̂−1M̂)−1), where M̂ = ∂ m̂(Θ̂)/∂Θ.

Functional Form for Structural Hazard. Even though the model is identified non-

parametrically, given small sample sizes, to minimize the number of estimated param-

eters, I assume that the structural hazard ψ(d) for d > 1 has a log-logistic form as

follows

ψ(d) =
(α2/α1)(d/α1)α2−1

1+ (d/α1)α2
(1)

where α1 > 0,α2 > 0. The hazard function in equation (1) is monotonically decreasing

when α2 ≤ 1 and is unimodal, initially increasing and subsequently decreasing when

α2 > 1. The mode or the turning point is α1(α2 − 1)1/α2 .23

23This provides a flexible parametrization for the structural hazard relative to other commonly used
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V DURATION DEPENDENCE AND HETEROGENEITY

V.A Baseline Estimates

Table 3 presents the main estimates from the Mixed Hazard model. Since I normal-

ized the mean of worker type to equal 1, the estimated structural hazards corresponding

to the first period for short and long-notice individuals coincide with their correspond-

ing observed exit rates in the data. The last two lines in panel A of Table 3 show

the estimated parameters for the log-logistic function specified in equation (1) used to

model structural dependence.

The structural hazards implied by these parameters are presented in panel B of Table

3 and panel A of Figure 2. Additionally, panel A of Figure 2 shows the observed exit

rate from the data, averaged across workers with short and long notice, alongside the

estimated hazard. This figure shows that the estimated hazard consistently exceeds the

observed hazard throughout the unemployment spell, indicating the role of underlying

heterogeneity. While the observed hazard in the data declines by 43.6% over the first 24

weeks, the estimated structural hazard only decreases by 33.6% during the same period.

Hence, after accounting for heterogeneity, almost three-quarters of the observed decline

in the first 24 weeks can be attributed to structural duration dependence.

However, the estimated structural hazard increases by 75% from 12-24 to 24-36

weeks, a much more pronounced increase than the observed hazard. This pattern pos-

sibly reflects individuals approaching the exhaustion of their unemployment insurance

(UI) benefits.24 As previously noted, there is variation across individuals in the eligible

duration of UI receipt. However, a significant proportion of individuals are eligible for

UI benefits that last for 26 weeks, which coincides with the third interval. Figure C4

parametrization, such as Weibull or Gompertz, as it allows the structural hazard to be non-monotonic.
However, I also present non-parametric estimates in Appendix D.

24Since the sample consists of displaced workers, a substantial portion of these individuals should be
eligible for UI benefits. Table C4 in the Appendix shows that more than 80% of individuals unemployed
for longer than 12 weeks report receiving UI benefits in the sample.
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TABLE 3: ESTIMATION RESULTS

Parameter Explanation Estimate SE

Panel A: Estimated Parameters

ψS(1) Structural hazard 0-12 weeks: Short notice 0.49 0.01
ψL(1) Structural hazard 0-12 weeks: Long notice 0.56 0.01
α1 Scale parameter for ψ(d) 2.06 0.17
α2 Shape parameter for ψ(d) 2.54 0.27

Panel B: Duration Dependence

ψ̄(1) Structural hazard: 0-12 weeks 0.53 0.01
ψ(2) Structural hazard: 12-24 weeks 0.35 0.07
ψ(3) Structural hazard: 24-36 weeks 0.61 0.09
ψ(4) Structural hazard: 36-48 weeks 0.61 0.09

Hansen-Sargan Test

Test statistic: 0.01 Critical value, d f = 1,χ2
0.05: 3.84

Note: The table presents estimates from the Mixed Hazard model. The first moment is normalized to
one, and structural duration dependence is specified by equation (1). Panel A shows the estimated pa-
rameters from the model, and panel B presents structural hazards implied by the estimated parameters.
The standard errors for the structural hazards are calculated using the delta method.

in the Appendix shows that the proportion of individuals reporting exhausting their UI

benefits jumps up significantly in the third interval. This finding of increasing structural

hazard leading up to benefit exhaustion is consistent with individuals intensifying their

job search efforts or lowering their expectations to secure employment before deplet-

ing their benefits. Finally, while the observed hazard continues declining even after 36

weeks, the structural hazard remains constant.

Panel B of Figure 2 displays the average type implied by the model for individuals with

short and long notice periods throughout the unemployment spell. For both groups, the

average type deteriorates over the course of unemployment. However, for individuals

with longer notice periods, the composition worsens more between 0-12 and 12-24

weeks, indicating a higher exit rate in the initial period for this group. By the end of

36 weeks, when a significant number of individuals have already left unemployment,
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FIGURE 2: BASELINE ESTIMATES
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Note: The solid blue line in panel A presents estimates for structural hazards as implied by the estimated
parameters in panel A of Table 3. The dotted black line in panel A presents the observed exit rate from
the data, averaged across workers with short and long notice. Panel B presents the implied average type
at each duration for those with short and long notice. Error bars represent 90% confidence intervals.

there is little difference in the average type between the two groups.

Overall, the estimated pattern of structural duration dependence aligns with existing

evidence from audit studies on call-back rates and with the predictions of search theory.

I find that individual exit probabilities decline during the first five months, which can

be attributed to duration-based employer discrimination. Further, I find that an individ-

ual’s exit probability increases leading up to benefit exhaustion and remains constant

after. This is consistent with search theory, which predicts that individuals increase

their search effort or lower their reservation wages until they reach benefit exhaustion.

After that point, if there are no further changes in workers’ incentives, their probability

of exiting unemployment should remain constant. Interestingly, in their audit study,

Kroft et al. (2013) find a decrease in callback rates only during the first six months of

unemployment (refer to Figure 2 in their paper). In Section VI, I formally illustrate that

my findings are consistent with a search model incorporating heterogeneous workers
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and falling callback rates early in the unemployment spell.

In recent studies, researchers have introduced behavioral modifications to the stan-

dard search theory in order to explain the observed decline in exit rates after UI exhaus-

tion, which deviates from the predictions of the standard search model. Most notably,

DellaVigna et al. (2021) introduces reference dependence in utility to account for this

decline. However, after adjusting for compositional effects, I do not find evidence of a

decline in individual exit probabilities after UI exhaustion. Hence, I show that the data

can be reconciled with the standard model by incorporating heterogeneous workers.

V.B Robustness Checks

In this section, I examine the robustness of the main results by presenting non-

parametric estimates, results using different moments for estimation, and findings from

an extension of the MH model that relaxes the identifying assumptions.

Appendix D presents results from several robustness checks. Figure D2 displays the

data and estimates using the unweighted sample. The results reveal that the exit rates

and estimates for the unweighted sample are very similar to those obtained using the

weighted sample, suggesting that the observable characteristics play a limited role in

explaining the differences in exit rates between notice groups. Figure D1 compares the

non-parametric estimate for the structural hazard with the baseline log-logistic esti-

mate. The non-parametric estimates are practically equivalent to the baseline but have

larger standard errors, particularly for the last data point where the standard error in-

creases significantly.

I also test the robustness of my findings by including additional notice length cate-

gories to the original estimation sample. First, I add individuals with no notice as a third

group, and then I repeat the process by including individuals with <1 month notice as

the third group. Details for these analyses are provided in Section D.3 in the Appendix,

and estimates are presented in Figure D3. The results show that the estimated struc-
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tural hazard is qualitatively similar to the baseline estimates in both cases. However,

when adding the <1 month notice group, the increase in the structural hazard leading

up to benefit exhaustion is less pronounced. Note that the model with three notice cat-

egories is overidentified with 4 degrees of freedom. The Sargan-Hansen J-statistic for

testing overidentifying restrictions is reported in both cases and indicates no evidence

against the null hypothesis of a correctly specified model.

For the main estimates, unemployment durations were grouped into 12-week inter-

vals. I now assess the robustness of these findings to different bin sizes through two

exercises. Firstly, I present estimates from the MH model using unemployment duration

data binned into 9-week intervals. The estimated structural hazard, shown in Figure

D4, mirrors the pattern reported in the main results. Specifically, it decreases from the

first to the second interval, followed by an increase in the third interval spanning 18-27

weeks, corresponding to UI exhaustion at 26 weeks.

Secondly, I conduct a simulation where I calculate exit rates using various bin sizes

under a specified data-generating process. Using these differently binned exit rates,

I estimate the MH model to examine how the estimates are affected by the choice of

bin size. Additional details for this simulation are presented in Section D.4 in the Ap-

pendix, and the results are illustrated in Figures D5 and D6. The key takeaway is that

the binned estimates reflect the cumulative structural hazard within an interval, rep-

resenting the probability of an individual exiting unemployment at some point during

that interval. Given this, while we may miss some intra-interval changes, the binned

estimates still capture a meaningful quantity and are informative about the underlying

duration dependence.

Finally, in Appendix E, I consider the unconditional model as in Corollary 1 and

show identification under more general conditions than independence and stationar-

ity. Specifically, with h(d|ν, L) = ψL(d)ν and considering two notice lengths, ℓ and ℓ′,

I define the following two quantities:
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κd = E(νd |ℓ′)− E(νd |ℓ), γd =
ψℓ′(d)
ψℓ(d)

κd is the difference between the d th moment of ν for the two lengths of notice, while γd

is the ratio of structural hazards at duration d for those lengths. In other words, these

parameters determine how the distribution of heterogeneity and structural hazard vary

by notice length. I then show that if κd is known for all d and γd for d > 1, the remaining

parameters of the model are identified. The result can be straightforwardly extended

to the model in Proposition 3. In fact, in the applications of this result described below,

I utilize the IPW exit rates constructed using observed durations.

I utilize this result to test the independence and stationarity assumptions as follows:

First, I relax the independence assumption by allowing the mean of the heterogeneity

distribution to vary by notice length (κ1 ̸= 0) while assuming stationarity (γd = 1 for

d > 1).25 Specifically, I reestimate the model for varying values of κ1 to see where the

residuals are minimized, which tells us which value of κ1 is most consistent with the

data under the given assumptions. Second, while maintaining independence (setting

all κd = 0), I relax stationarity by assuming γd = γ for all d > 1. Once again, I rees-

timate the model, varying γ values to find the residual-minimizing point. The results

for these exercises are presented in Figures E1 and E2. In both cases, the residuals

plotted as a function of the parameters resemble a convex function with a clear local

minimum. Moreover, the residuals are minimized when κ1 ≈ 0 and γ ≈ 1, supporting

the identifying assumptions. Finally, as a last exercise, I relax both of these assump-

tions simultaneously by reestimating the model for a grid of κ1 and γ values. The

results, presented in Figure E3, still show the residual-minimizing values close to 0 and

1, respectively. Overall, this provides evidence in favor of the identifying assumptions

25In this exercise, I allow only the mean of the heterogeneity distribution to vary while keeping the
shape of the distribution, as determined by the central moments, consistent across the two groups. Note
that κd for d > 1 will still be non-zero because non-central moments depend on scale, so I let them vary
accordingly to ensure that the central moments, apart from the mean, are the same for both groups.
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employed in the paper.

VI A MODEL OF JOB-SEARCH

The estimates obtained from the Mixed Hazard model suggest a decline in an in-

dividual worker’s probability of exiting unemployment during the initial five months.

Additionally, I find evidence that an individual’s likelihood of exiting unemployment in-

creases as they approach the exhaustion of unemployment insurance (UI) benefits and

remains constant after that. The latter is in contrast to the observed exit rate, which

continues to decline even after benefit exhaustion. Researchers have tried to explain

the decline in the observed rate after exhaustion using behavioral explanations such as

storable offers (Boone and van Ours, 2012) or reference dependence in utility (DellaV-

igna et al., 2021). In this section, I show that my findings align with standard search

theory, incorporating heterogeneous workers, and are consistent with evidence from

the audit study conducted by Kroft et al. (2013), which documents an initial decline in

callback rates during the unemployment spell.

In particular, I set up a search model with heterogeneous workers. Within this model,

workers choose search effort to maximize their expected utility. The likelihood of find-

ing a job depends on the offer arrival rate and a worker’s search effort. Moreover, the

offer arrival rate varies by the duration of unemployment and the type of worker. I

calibrate the model to match the implied structural dependence to my estimate from

the Mixed Hazard model and also match the exit rate implied by the model to the data.

I then examine the trajectory of the offer arrival rate and search effort. This exercise

also allows me to discern the impact on exit probabilities arising from two sources: the

actions of optimizing agents in response to changing incentives and external factors

directly influencing a worker’s employment prospects.
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VI.A Model Setup

I consider a stylized model of job search where a worker’s search environment is non-

stationary (Mortensen, 1986; van den Berg, 1990) and workers are heterogeneous.

At every duration d, workers choose how much search effort s to exert to maximize

their discounted expected utility.26 Costs of search effort are given by the function

c(s), which is increasing, convex, and twice continuously differentiable, with c(0) = 0

and c′(0) = 0. The probability that a worker finds a job λ(d,ν, s) depends on the

time elapsed since unemployed d, their search effort s, and their type ν as follows:

λ(d,ν, s) = δ(d)νs. Here, δ(d)ν is the offer arrival rate, which varies over the duration

of unemployment and across workers of different types. Once workers find a job, they

remain employed forever. A worker receives unemployment insurance (UI) benefits

b(d) when unemployed and wages w when employed. The function u(.) gives the flow

utility from consumption. Then the value function for a worker of type ν unemployed

at duration d is given by:

Vu(d,ν) =max
s

u(b(d))− c(s) + β [λ(s, d,ν)Ve + (1−λ(s, d,ν))Vu(d + 1,ν)]

Here, β is the discount rate, and Ve is the value of employment given by Ve = u(w)+

βVe. The UI benefits b(d) are equal to b for d ≤ DB and equal to 0 otherwise. I also

assume that after some time DT ≥ DB the job-finding function λ(d, s,ν) does not depend

on the duration of unemployment d, such that for d > DT , δ(d) = δT . This ensures

that after DT , jobseekers face a stationary environment, and hence, we can solve for

the optimal search strategy of each worker in each period using backward induction.

Finally, I consider the case of two types of workers: a high type H and a low type L with

νH > νL, with π denoting the share of workers with the higher arrival rate.

26Alternatively, the model could feature a reservation wage choice, and all conclusions about search
effort would instead be regarding reservation wages.
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VI.B Numerical Analysis

I now calibrate the model specified in the previous section. Let s(d,ν) denote a

worker’s optimal search effort at duration d. The probability that this worker finds a job

h(d|ν) is given by δ(d)s(d,ν)ν. So, a worker’s exit rate evolves over the spell of unem-

ployment due to changes in the offer arrival rate δ(d) and the worker’s search effort.

However, just as before, the observed exit rate h(d) = E[h(d|ν)|D ≥ d] also changes

due to changes in composition over the spell of unemployment. I use my estimate of

the structural hazard from the Mixed Hazard model to target structural duration depen-

dence E[h(d|ν)] from the model.27 Additionally, I match the exit rate implied by the

model h(d) to the data. In order to compare the predictions from this model to a model

with no heterogeneity, I also calibrate the model assuming just one type of worker. In

this case, I match the structural duration dependence or the exit rate implied by the

model to the exit rate in the data. Further details for the calibration are provided in

Appendix B.

Figure B1 shows that both the model with and without heterogeneity fit the data

almost perfectly. Figure 3 presents the search effort and the offer arrival rate implied

by the two calibration exercises. The offer arrival rate implied by the model with het-

erogeneity declines during the first five months and is constant after that, which is

consistent with evidence from Kroft et al. (2013). Conversely, in the model with only

one type of worker, the offer arrival rate continues to decline throughout the spell of

unemployment. Finally, the model calibration implies that an individual’s search effort

decreases slightly during the first five months but then increases up to UI exhaustion

and remains stable after that. In summary, the data and my findings can be ratio-

nalized with conventional search theory, without any behavioral adjustments, but by

27Note that the search model does not correspond precisely to the econometric framework since it does
not imply that s(d,ν) evolves in the same manner for each type of worker. However, in Appendix F, I
simulate data from the search model with notice periods and show that my estimator does reasonably
well in capturing movements in E[h(d|ν)].
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FIGURE 3: CALIBRATION OF THE SEARCH MODEL
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(B) SEARCH EFFORT

Notes: The figure presents the search effort and the offer arrival rate from the calibration of the search
model, assuming no heterogeneity (dashed black line) and assuming two types of workers (solid blue
line). The search effort is averaged over two types of workers.

incorporating heterogeneity among workers and declining returns to search early in

the unemployment spell.

VII CONCLUSION

In this paper, I use a novel source of variation to disentangle the role of structural

duration dependence from heterogeneity in the dynamics of the observed exit rate. I

document that workers who receive a longer notice before being laid off are more likely

to exit unemployment early in the spell. However, the observed exit rate is lower for

long-notice workers at later durations. This points towards the presence of heterogene-

ity across workers. As a higher proportion of the more employable workers from the

long-notice group exit early, the composition of surviving long-notice workers at later

durations is worse. I utilize these reduced-form moments and estimate a Mixed Hazard
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model.

The estimates from the hazard model uncover substantial heterogeneity in individ-

ual exit probabilities. The observed exit rate declines by about 43.6% over the first five

months. In contrast, the estimated individual hazard only declines by 33.6% over this

period. Moreover, I find that after the first five months, none of the depreciation in the

observed exit rate is due to structural duration dependence. Instead, an individual’s

exit probability increases up to UI exhaustion and remains constant after. The observed

exit rate continues to decline after exhaustion as well, which has led researchers to sug-

gest behavioral explanations for this pattern. I show that the alternative explanation

of heterogeneity across individuals effectively accounts for this pattern. Specifically, as

shown in the paper, my estimates can be rationalized within a standard search model

with heterogeneous workers. These findings underscore the importance of incorporat-

ing heterogeneity when estimating and calibrating search models.
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APPENDIX A PROOFS AND DERIVATIONS

This section provides proofs of the results discussed in the main text. Before pro-

ceeding, let us introduce some additional notation. Denote the probability distribution

function of observed duration by g(.). Additionally, define the corresponding survival

function S(.) to represent the probability that unemployment duration exceeds a specific

value.

At this point, it will be useful to examine the expressions for the quantities defined

above under Assumption 1, which specifies that h(d|ν, L, X ) = ψL(d, X )ν. First, note

that we can express the survival function S(d|ν, L, X ) as follows:

S(d|ν, L, X ) = Pr(D > d|ν, L, X ) =
d
∏

s=1

[1−ψL(s, X )ν]

Given the above expression, the conditional distribution of observed duration is given

by:

g(d|ν, L, X ) = Pr(D = d|ν, L, X )

= S(d − 1|ν, L, X )− S(d|ν, L, X )

=ψL(d, X )νS(d − 1|ν, L, X ) (2)

with S(0|ν, L, X ) = 1.

Finally, note that according to the definition of the hazard function in the text, for a

set of conditioning variables Υ , we have:

h(d|Υ ) = Pr(D = d|D ≥ d,Υ ) =
Pr(D = d|Υ )
Pr(D ≥ d|Υ )

=
g(d|Υ )

S(d − 1|Υ )

The above expression illustrates that, given h(d|Υ ) for d = 1,2, ..., D̄, we can compute

g(d|Υ ) and S(d|Υ ) for the same durations, and vice versa. This means that knowing

any one of these three quantities enables the calculation of the other two. Therefore,
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although the statement of results might specify a set of parameters being identified from

h(d|Υ ), it does not matter if the proof utilizes derived quantities g(d|Υ ) or S(d|Υ ).

A.1 Proof of Proposition 1

Proof. Given equation (2), we can write g(d|L, X ) =ψL(d, X )E[νS(d−1|ν, L, X )|L, X ].

Plugging this in the definition of h(d|L, X ), we get:

h(d|L, X ) =ψL(d, X )E
�

ν ·
S(d − 1|ν, L, X )
S(d − 1|L, X )

�

�

�

�

L, X
�

To see that the second term in the above expression is the average type E(ν|D ≥

d, L, X ) amongst surviving workers at the beginning of d, note that

f (ν|D ≥ d, L, X ) =
Pr(D > d − 1|ν, L, X ) f (ν|L, X )

Pr(D > d − 1|L, X )
=

S(d − 1|ν, L, X ) f (ν|L, X )
S(d − 1|L, X )

where the first inequality follows from the Bayes rule.

To see that the average type declines with duration, note that for any d and νH > νL,

S(d|νH , L, X )
S(d − 1|νH , L, X )

<
S(d|νL, L, X )

S(d − 1|νL, L, X )

The above equation implies that,

f (νH |D ≥ d + 1, L, X )
f (νL|D ≥ d + 1, L, X )

<
f (νH |D ≥ d, L, X )
f (νL|D ≥ d, L, X )

In which case, f (ν|D ≥ d, L, X ) first-order stochastically dominates f (ν|D ≥ d+1, L, X )

which implies that E(ν|D ≥ d, L, X )≥ E(ν|D ≥ d + 1, L, X ).

A.2 Statement and Proof of Lemma 1

The following lemma states that the identification of structural hazards implies the

identification of higher moments of the unobserved type distribution.
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Lemma 1. Under Assumption 1, if ψL(d, X ) is known for d = 1, .., D̄, then we can iden-

tify the first D̄ conditional moments of ν, given by {E(νk|L, X )}D̄k=1, from the conditional

unemployment distribution g(d|L, X ) for d = 1, .., D̄.

Proof. Expanding equation (2) for d = 1, 2,3, ..., we can write:

g(1|ν, L, X ) =ψL(1, X )ν

g(2|ν, L, X ) =ψL(2, X )
�

ν−ψL(1, X )ν2
�

g(3|ν, L, X ) =ψL(3, X )
�

ν− [ψL(1, X ) +ψL(2, X )]ν2 +ψL(1, X )ψL(2, X )ν3
�

...

Or, more compactly,

g(d|ν, L, X ) =ψL(d, X )
D̄
∑

k=1

ck(d,ψL,X)ν
k (3)

where ψL,X = {ψL(d, X )}D̄d=1 and

ck(d,ψL,X) =























1 for k = 1

ck(d − 1,ψL,X)−ψL(d − 1, X )ck−1(d − 1,ψL,X) for 1≤ k ≤ d

0 for k > d

Taking the expectation conditional on L and X of the above expression, we can write:

g(d|L, X ) =ψL(d, X )
D̄
∑

k=1

ck(d,ψL,X)E(ν
k|L, X )

Let us denote g L,X = {g(d|L, X )}D̄d=1 and µL,X = {E(νk|L, X )}D̄k=1. Then we can write

g L,X = C(ψL,X)µL,X where C(ψL,X) is the D̄×D̄ upper triangular matrix with Cs,k(ψL,X) =

ψL(s, X )ck(s,ψL,X). In addition, the diagonal elements of C(ψL,X) are non-zero. To

see this note that, Cd,d(ψL,X) = (−1)d−1
∏d

s=1ψL(s, X ) and each ψL(s, X ) > 0. Hence,
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C(ψL,X) is invertible and we can plug inψL,X in g L,X = C(ψL,X)µL,X to solve for µL,X .

A.3 Proof of Theorem 1

Proof. Assumption 3 states that ψL(d, X ) = ψ(d, X ) for d > 1. For this reason, define

Š(d|ν, X ) as:

Š(d|ν, X ) =
d
∏

s=2

�

1−ψ(s, X )ν
�

Then by Assumption 3, for d > 1, we can write:

S(d|ν, L, X ) = [1−ψL(1, X )ν]Š(d|ν, X ) (4)

Next, by substituting the expression for S(d − 1|ν, L, X ) implied by equation (4) into

the expression for g(d|ν, L, X ) given in equation (2), we obtain:

g(d|ν, L, X ) =ψL(d, X )
�

νŠ(d − 1|ν, X )−ψL(1, X )ν2Š(d − 1|ν, X )
�

(5)

Now note that since Assumption 2 states that ν is independent of L given X , it follows

that for any L = ℓ:

q(d|ℓ, X ) = E[q(d|ν,ℓ, X )|ℓ, X ] = E[q(d|ν,ℓ, X )|X ] for q = S, g

Therefore, by taking the conditional expectation of the expressions implied by equations

(4) and (5) under Assumptions 2 and 3, we get:

S(d − 1|L, X ) = E[Š(d − 1|ν, X )|X ]−ψL(1, X )E[νŠ(d − 1|ν, X )|X ] (6)

g(d|L, X ) =ψ(d, X )[E[νŠ(d − 1|ν, X )|X ]−ψL(1, X )E[ν2Š(d − 1|ν, X )|X ]] (7)
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Next, consider two notice lengths ℓ and ℓ′. Substituting L = ℓ,ℓ′ in equations (6) and

(7) and taking the difference between expressions for ℓ′ and ℓ, we get:

S(d − 1|ℓ′, X )− S(d − 1|ℓ, X ) = [ψℓ(1, X )−ψℓ′(1, X )]E[νŠ(d − 1|ν, X )|X ] (8)

g(d|ℓ′, X )− g(d|ℓ, X ) =ψ(d, X )[ψℓ(1, X )−ψℓ′(1, X )]E[ν2Š(d − 1|ν, X )|X ] (9)

From equation (8), we can write:

E[νŠ(d − 1|ν, X )|X ] =
S(d − 1|ℓ′, X )− S(d − 1|ℓ, X )

ψℓ(1, X )−ψℓ′(1, X )
(10)

Similarly, from equation (9), we obtain:

E[ν2Š(d − 1|ν, X )|X ] =
g(d|ℓ′, X )− g(d|ℓ, X )

ψ(d, X )(ψℓ(1, X )−ψℓ′(1, X ))
(11)

Plugging terms from equations (10) and (11) in the expression for g(d|ℓ, X ) given by

equation (7), implies that for d > 1:

ψ(d, X ) =
g(d|ℓ′, X )ψℓ(1, X )− g(d|ℓ, X )ψℓ′(1, X )

S(d − 1|ℓ′, X )− S(d − 1|ℓ, X )

Here, the denominator is not equal to zero as we assumed ψℓ′(1, X ) ̸=ψℓ(1, X ).

Now note that for d = 1, g(1|ℓ, X ) = ψℓ(1, X )E[ν|X ]. So plugging in ψℓ(1, X ) =

g(1|ℓ, X )/E[ν|X ] in the expression for ψ(d, X ) above, we can write:

ψ(d, X )E(ν|X ) =
g(d|ℓ′, X )g(1|ℓ, X )− g(d|ℓ, X )g(1|ℓ′, X )

S(d − 1|ℓ′, X )− S(d − 1|ℓ, X )

Since all the quantities on the right-hand side of the above equation can be derived

from the conditional exit rates, it follows that {ψℓ(1, X ),ψℓ′(1, X ), {ψ(d, X )}D̄d=2} are

identified up to a multiplicative constant from {h(d|ℓ, X ), h(d|ℓ′, X )}D̄d=1. Identification

of conditional moments follows from Lemma 1 by noting that E(νk|L, X ) = E(νk|L)

under conditional independence.

43



A.4 Proof of Corollary 1

Proof. Given that h(d|ν, L) =ψL(d)ν, we can write:

S(d|ν, L) =
d
∏

s=1

[1−ψL(s)ν] , g(d|ν, L) =ψL(d)νS(d − 1|ν, L)

Moreover, L ⊥ ν implies that for any L = ℓ, q(d|ℓ) = E[q(d|ν,ℓ) | ℓ] = E[q(d|ν,ℓ)]

for q = S, g. Since we assumed that ψL(d) = ψ(d) for d > 1, let us define as before:

Š(d|ν) =
∏d

s=2 [1−ψ(s)ν] for d > 1. We then obtain the following expressions:

S(d − 1|L) =E[Š(d − 1|ν)]−ψL(1)E[νŠ(d − 1|ν)]

g(d|L) =ψ(d)
�

E[νŠ(d − 1|ν)]−ψL(1)E[ν2Š(d − 1|ν)]
�

Note that the above equations take a similar form to equations (6) and (7), with the

only difference being that the expressions are free of X . Thus, by considering L = ℓ,ℓ′

and replicating the steps following equation (7) in the proof of Theorem 1, we can

derive that ψL(1) = g(1|L)/E(ν) for L ∈ {ℓ,ℓ′}, and

ψ(d)E(ν) =
g(d|ℓ′)g(1|ℓ)− g(d|ℓ)g(1|ℓ′)

S(d − 1|ℓ′)− S(d − 1|ℓ)
for d > 1.

This concludes the proof for identifying structural hazards up to a scale. For the identi-

fication of the unconditional moments of the type distribution, we can follow the steps

from Lemma 1. In particular, g L = [g(d|L)]D̄d=1 can be expressed using as a system of

D̄ equations, in terms of the structural hazards ψL = [ψL(d)]D̄d=1 and the moments of

the type distribution µ = [E(νk)]D̄k=1. Specifically, g L = C(ψL)µ, where C(ψL) is an in-

vertible matrix, as outlined in Lemma 1. Hence, we can plug in the identified structural

hazards to derive the moments
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A.5 Proof of Proposition 2

Proof. Define gw(.) as the weighted distribution and Sw(.) as the weighted survival func-

tion. Specifically, qw(d|L) = E[q(d|ν, L, X )/pL(X )|L] for q = g, S. According to the

definition in the main text, hw(d|L) = gw(d|L)/Sw(d − 1|L). Therefore, given hw(d|L)

for d = 1,2, ..., D̄, we can compute gw(d|L) and Sw(d|L) for the same durations as well.

We can show that for any L = ℓ, qw(d|ℓ) = E[q(d|ν,ℓ, X )]/πℓ for q = g, S, under

conditional independence, by following the steps outlined below:

E
�

q(d|ν,ℓ, X )
pℓ(X )

�

�

�

�

ℓ

�

= E
�

E
�

q(d|ν,ℓ, X )
pℓ(X )

�

�

�

�

ℓ, X
�

�

�

�

�

ℓ

�

(i)

= E
�

E
�

q(d|ν,ℓ, X )
pℓ(X )

�

�

�

�

X
�

�

�

�

�

ℓ

�

(ii)

=

∫

E[q(d|ν,ℓ, x)|x]
pℓ(x)

· fX |ℓ(x) ∂ x (iii)

=
1
πℓ
·E[q(d|ν,ℓ, x)] (iv)

Here, πℓ = Pr(L = ℓ) and fX |L(.) represents the distribution of X given L. Step (i)

utilizes the law of iterated expectations, step (ii) follows from L ⊥ ν|X , step (iii) uses

the definition of conditional expectation, and step (iv) follows from the Bayes’ rule,

which implies that fX |ℓ(x) = pℓ(x) fX (x)/πℓ.

As an aside, note that this implies that:

hw(d|ℓ) =
E[g(d|ν,ℓ, X )]
E[S(d − 1|ν,ℓ, X )]

=
E[Pr(Dℓ = d|ν, X )]
E[Pr(Dℓ ≥ d|ν, X )]

=
Pr(Dℓ = d)
Pr(Dℓ ≥ d)

= Pr(Dℓ = d|Dℓ ≥ d)

Having shown that πℓq
w(d|ℓ) = E[q(d|ν,ℓ, X )] for q = g, S, if we now take the ex-

pectation of the expressions implied by equations (4) and (5) and substituteψL(d, X ) =

ψL(d)φ(X ) with ψL(d) =ψ(d) for d > 1, we obtain:

πLSw(d − 1|L) = E[Š(d − 1|ν, X )]−ψL(1)E[θ (X ,ν)Š(d − 1|ν, X )]

πL gw(d|L) =ψ(d)
�

E[θ (X ,ν)Š(d − 1|ν, X )]−ψL(1)E[θ (X ,ν)2Š(d − 1|ν, X )]
�
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where θ (X ,ν) = φ(X )ν.

Note that the above equations take a similar form to equations (6) and (7). Thus,

by considering L = ℓ,ℓ′ and replicating the steps following equation (7) in the proof of

Theorem 1, we can derive that ψL(1) = πL gw(1|L)/E[θ (X ,ν)] for L ∈ {ℓ,ℓ′}, and

ψ(d)E[θ (X ,ν)] =
gw(d|ℓ′)gw(1|ℓ)− gw(d|ℓ)gw(1|ℓ′)
Sw(d − 1|ℓ′)/πℓ − Sw(d − 1|ℓ)/πℓ′

for d > 1

To see that the moments are identified as well, first note that by plugging inψL(d, X ) =

ψL(d)φ(X ), we can rewrite equation (3) as:

g(d|ν, L, X ) =ψL(d)
D̄
∑

k=1

ck(d,ψL)φ(X )
kνk (12)

where ψL = {ψL(d)}D̄d=1 and ck(d,ψL) is defined as in Lemma 1. Since we established

that πℓg
w(d|ℓ) = E[g(d|ν,ℓ, X )], we can write:

πL gw(d|L) =ψL(d)
D̄
∑

k=1

ck(d,ψL)E(φ(X )
kνk)

The rest of the proof follows as in the proof for Lemma 1. Denote g w
L = {πL gw(d|L)}D̄d=1

and µw = {E[θ (X ,ν)k]}D̄k=1. Then we can write g w
L = C(ψL)µ

w where C(ψL) is an in-

vertible matrix, as outlined in Lemma 1. Hence, we can plug in the identified structural

hazards to find µw .

A.6 Proof of Proposition 3

Proof. First note that, by the definition of D̃ and C , we can write h̃w(d|L) as follows:

h̃w(d|L) = E
�

Pr(D = d, Dc ≥ d|ν, L, X )
pL(X )

�

�

�

�

L
�

�

E
�

Pr(D ≥ d, Dc ≥ d|ν, L, X )
pL(X )

�

�

�

�

L
�
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Now note that,

E
�

Pr(D ∈∆, Dc ≥ d|ν, L, X )
pL(X )

�

�

�

�

L
�

= E
�

E
�

Pr(D ∈∆, Dc ≥ d|ν, L, X )
pL(X )

�

�

�

�

L, X
�

�

�

�

�

L

�

(i)

= E
�

E
�

Pr(D ∈∆, Dc ≥ d|ν, L, X )
pL(X )

�

�

�

�

X
�

�

�

�

�

L

�

(ii)

=

∫

E[Pr(DL ∈∆, Dc ≥ d|ν, x)|x]
pL(x)

· fX |L(x) (iii)

= E[Pr(DL ∈∆, Dc ≥ d|ν, X )] (iv)

= Pr(DL ∈∆, Dc ≥ d)

Here,πℓ = Pr(L = ℓ) and fX |L(.) represents the distribution of X given L. Step (i) utilizes

the law of iterated expectations, step (ii) follows from L ⊥ ν|X and Dc ⊥ ν|X , step (iii)

uses the definition of conditional expectation and swaps D with potential duration DL,

and step (iv) follows from the Bayes’ rule, which implies that fX |L(x) = pL(x) fX (x)/πL.

Note that this implies that:

h̃w(d|L) =
Pr(DL = d, Dc ≥ d)
Pr(DL ≥ d, Dc ≥ d)

=
Pr(DL = d|Dc ≥ d)
Pr(DL ≥ d|Dc ≥ d)

= Pr(DL = d|DL ≥ d, Dc ≥ d)

As before, if we are given the hazard rate, we can also calculate the corresponding

density and survival rate. In what follows, the identification of parameters is shown

using the density and survival rates Pr(DL = d|Dc ≥ d) and Pr(DL ≥ d|Dc ≥ d). In

particular, note that Pr(DL = d|Dc ≥ d) = E[g(d|ν, L, X )|Dc ≥ d] and Pr(DL ≥ d|Dc ≥

d) = E[S(d|ν, L, X )|Dc ≥ d]. Therefore, taking the conditional expectation of the ex-

pressions implied by equations (4) and (5) and substituting ψL(d, X ) = ψL(d)φ(X )

with ψL(d) =ψ(d) for d > 1, we get:

Pr(DL ≥ d|Dc ≥ d) = Ed[Š(d − 1|ν, X )]−ψL(1)Ed[θ (X ,ν)Š(d − 1|ν, X )]

Pr(DL = d|Dc ≥ d) =ψ(d)
�

Ed[θ (X ,ν)Š(d − 1|ν, X )]−ψL(1)Ed[θ (X ,ν)2Š(d − 1|ν, X )]
�

Here, θ (X ,ν) = φ(X )ν, and I use Ed to denote expectations conditional on Dc ≥ d for
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brevity; specifically, Ed(.) = E(.|Dc ≥ d). Except for the expectations being conditional

on Dc ≥ d, the expressions on the right-hand side in the equations are identical to

those in Proposition 2. Therefore, one can follow the same steps as in Proposition 2

to show the identification of structural hazards. However, it should be noted that the

moments are not yet identified. This is because taking the expectation of equation (12)

conditional on Dc ≥ d results in different moments entering different period densities.

For instance, we will have E[θ (X ,ν)|Dc ≥ 1] in the first-period density, but the second-

period density will have E[θ (X ,ν)|Dc ≥ 2]. However, if we further assume that Dc ⊥ X

and Dc ⊥ ν, then E[θ (X ,ν)k|Dc ≥ d] = E[θ (X ,ν)k], and identification of moments

follows from Proposition 2.

A.7 Proof for E[mi(ℓ, d;Θ)] = 0

For brevity, I omit the i subscript from the terms in the following exposition. Addi-

tionally, let us denote the indicators for exit and survival used in the individual moments

as follows: I E(d) = I{D̃ = d, C = 0} and IS(d) = I{D̃ ≥ d}. In this case, we can rewrite

the expression for individual moments as follows:

m(ℓ, d;Θ) = I{L = ℓ}
�

I E(d)
pℓ(X )

− h̃w(d|ℓ;Θ) ·
IS(d)
pℓ(X )

�

Proof. By taking the expectation of the m(ℓ, d;Θ) expression above and applying the

law of iterated expectations, we get:

E[m(ℓ, d;Θ)] = πℓ

�

E
�

I E(d)
pℓ(X )

�

�

�

�

L = ℓ
�

− h̃w(d|ℓ;Θ) ·E
�

IS(d)
pℓ(X )

�

�

�

�

L = ℓ
�

�

Applying the law of iterated expectations again, we can write:

E[m(ℓ, d;Θ)]
πℓ

= E

�

E
�

I E(d)
�

�L = ℓ, X
�

pℓ(X )

�

�

�

�

�

L = ℓ

�

−h̃w(d|ℓ;Θ)·E

�

E
�

IS(d)
�

�L = ℓ, X
�

pℓ(X )

�

�

�

�

�

L = ℓ

�

Finally, by substituting E[I E(d)|L, X ] = Pr(D̃ = d, C = 0|ν, L, X ) and E[IS(d)|L, X ] =
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Pr(D̃ ≥ d|ν, L, X ) into the above expression, and applying the definition of h̃w(d|ℓ;Θ),

it becomes clear that the right-hand side equals zero.

APPENDIX B SEARCH MODEL CALIBRATION

I calibrate the model under standard values for model parameters. To maintain con-

sistency with the econometric model, each period is assumed to be 12 weeks long.

Corresponding to a 5 percent annual interest rate, the discount factor β is set equal

to 0.985. I normalize the wage to 1 and set the replacement rate for unemployment

benefits at 0.5. In addition, I assume individuals receive an annuity payment of 0.1

times their wages in each period, regardless of their employment status. This can be

interpreted as the income of a secondary earner. Utility from consumption is given by

the constant relative risk aversion (CRRA) utility function, u(c) = c1−σ/(1 − σ) with

σ = 1.75. I follow DellaVigna et al. (2017) and Marinescu and Skandalis (2021) in

assuming that costs of job search are given by c(s) = θ s1+ρ/(1 + ρ). I set ρ = 1 and

θ = 50.28 Table B1 summarizes the calibration parameters and Figure B1 displays the

fit of the calibrated model.

28Different parameters for the cost function do not change qualitative predictions of my exercise but
do lead to changes in the scale of the search effort.
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TABLE B1: CALIBRATION PARAMETERS FOR THE SEARCH MODEL

Parameter Value

Length of each period 12 Weeks
Discount factor β 0.985
Relative risk aversion σ 1.75
Per period wages w 1
Annuity Payments 0.1
Unemployment benefits 0.5
Benefit exhaustion DB 3
Search cost parameter ρ 1
Search cost parameter θ 50
First period arrival rate δ(1) 1

Note: The table presents the parameters used for calibrating the search model in Section VI.

FIGURE B1: SEARCH MODEL CALIBRATION: FIT
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Note: The figure displays the fit of the search model for the two calibration exercises described in the
text. Panel A shows the observed exit rate in the data (solid black line) alongside the corresponding fitted
values obtained from calibrating the search model without heterogeneity (dotted red line) and with two
types of workers (dashed blue line). Panel B displays the estimated structural hazard from the Mixed
Hazard (MH) model (solid black line) and the fitted structural hazard from calibrating the search model
with two types of workers (dashed blue line).
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APPENDIX C DATA

This section provides more details about data construction and sample selection. It

also elaborates on the estimation of propensity scores and checks the balance of the

weighted sample on additional measures. Supplementary data descriptives are also

presented here.

C.1 Data Construction and Sample Selection

The Displaced Worker Supplement (DWS) was introduced in 1984, but the variable

on the length of notice was not included in the first two samples. Furthermore, the

definition of displaced workers has changed over time.29 Before 1998, self-employed

individuals or those who expected to be recalled to their lost job within six months were

also included in the survey. However, the information on whether a worker expected to

be recalled is only available for the years 1994 and 1996. In addition, the data on the

length of time individuals took to find their next job is miscoded and largely missing for

the year 1994. For these reasons, my analysis begins from 1996. Moreover, to maintain

consistency across years, I exclude self-employed individuals or those who expected to

be recalled from the 1996 sample.

The final sample only includes individuals with non-missing information on all the

variables utilized in the analyses. Additionally, to capture individuals who had lost a

job representing stable, non-temporary employment, the sample is limited to those who

worked full-time for at least six months at their previous job and had health insurance

provided through that employment. Finally, to minimize retrospective bias, I exclude

individuals who report switching more than two jobs since losing their previous job.

The sample selection procedure is summarized in Table C1.

The duration of unemployment for individuals who have secured a job by the time

29The recall window was 5 years instead of 3 before 1994.
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TABLE C1: SAMPLE SELECTION

Sample condition Observations

DWS 1996-2020, 21-64 year old respondents 44707
No recall expectation 44537
Lost job was not self-employment 43471
Non-missing values for variables used 29443
Worked full-time at lost job 25293
Employed for at least 6 months at lost job 22991
Had health insurance at lost job 14825
Held less than 3 jobs since lost job 13784
Got a notice before job loss 5898
Got a notice of >1 month 4175

Note: The table shows the number of observations remaining at each step of sample selection.

TABLE C2: COMPARISON OF THE ANALYTICAL SAMPLE TO ALL INDIVIDUALS IN THE DIS-
PLACED WORKER SUPPLEMENT (DWS) AND THE CURRENT POPULATION SURVEY (CPS)

Sample DWS CPS
(1) (2) (3)

Age 43.04 40.61 42.22
Female 0.45 0.44 0.52
Married 0.61 0.54 0.60
Black 0.10 0.11 0.10
High School 0.30 0.42 0.41
Some College 0.30 0.32 0.29
College Degree 0.40 0.26 0.30
Employed 0.80 0.67 0.75
Unemployed 0.18 0.21 0.04
NILF 0.02 0.12 0.21

Observations 4175 44707 964225

Note: All samples are restricted to individuals between the ages of 21 to 64 and pertain to years 1996-
2020. Column (1) includes individuals from the DWS who worked full-time for at least six months and
were provided health insurance at their lost job, did not expect to be recalled, and received a layoff no-
tice of 1-2 months or greater than 2 months. Columns (2) and (3) include all individuals in the DWS
and the monthly CPS, respectively.
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FIGURE C1: ASSESSING OVERLAP OF PROPENSITY SCORE DISTRIBUTIONS
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Note: The figure presents the density of estimated propensity scores for individuals with short and long
notice separately.

of the survey is given by the dwwksun variable, which measures the number of weeks

the person was unemployed between leaving or losing one job and starting another.

For those who report not holding another job since their lost job, censored duration is

obtained using the durunemp variable from the CPS. Since 2012, tenure at the lost job

was top-coded at 24 years. To maintain consistency across samples, I also implement

a top code of 24 years for all years prior to 2012. Earnings are reported in 1999 dol-

lars. Table C2 presents the descriptive statistics for my analytical sample relative to all

individuals aged 21 to 64 in the DWS and the CPS over the sample period.

C.2 Propensity Score Weighting

To ensure individuals with long and short notice are comparable, I reweight the sam-

ple using inverse propensity score weighting. The weight for each individual is calcu-

lated as the inverse of the likelihood of receiving the reported notice length. To estimate

the propensity scores, I utilize a logistic regression where the odds of receiving a longer
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FIGURE C2: LENGTH OF NOTICE OVER TIME
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Note: The figure plots a 3-year moving average of the proportion of individuals who received a notice of
more than 2 months amongst all individuals in the sample who were displaced in a given year.

notice are modeled as a function of several variables. These variables include age, gen-

der, marital status, race (specifically, an indicator for Black), education level, reason

for layoff, union membership, residence in a metropolitan area, tenure, and earnings

at the lost job. Additionally, fixed effects for occupation and industry of the lost job,

state of residence, and year of displacement are included in the model. The density of

estimated propensity scores for short and long-notice individuals is displayed in Figure

C1. The figure indicates a significant overlap between the two distributions, with all

estimated propensity scores falling in the 0.1 to 0.9 range, thereby rendering further

data trimming unnecessary.

Table 1 in the main text provides evidence that the reweighting achieves balance

across certain observable variables. Figure C2 demonstrates that reweighting leads to

balance with respect to the year of displacement. In addition, Figure C3 presents occu-

pation and industry distributions for short and long-notice workers in both the balanced

and unbalanced samples. Notably, the weighted sample exhibits more similarity in the

industrial and occupational composition of short and long-notice workers.
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FIGURE C3: INDUSTRY AND OCCUPATION OF THE LOST JOB
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Note: The figure presents the proportions of individuals whose displaced jobs were in specific industries
(panels A and B) and occupations (panels C and D) among long-notice and short-notice workers in both
the unbalanced and balanced samples. The error bars represent the 90% confidence intervals.
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TABLE C3: EARNINGS AT THE SUBSEQUENT JOB

Weekly Log Earnings
(1) (2) (3) (4)

> 2 month notice 0.091** 0.066** 0.093** 0.063*
(0.037) (0.032) (0.038) (0.032)

Controls No Yes No Yes
Weights No No Yes Yes

Observations 2657 2657 2657 2657

Note: The table shows results from linear regressions of log weekly wages at the subsequent job on an
indicator for receiving a notice of more than 2 months. The sample used is similar to the main analyti-
cal sample, but it excludes individuals who had not yet found employment at the time of the survey, had
multiple jobs between their previous and current jobs, or had incomplete earnings information for other
reasons. Robust standard errors are reported in the parenthesis.

C.3 Additional Descriptives

This section provides additional descriptive statistics. Table C3 presents the relation-

ship between longer notice and earnings at the subsequent job. The table indicates that

workers with longer notice tend to have higher earnings in their subsequent jobs. How-

ever, we cannot interpret this as a direct impact of longer notice because extended pe-

riods of unemployment can have a negative impact on wages (Schmieder et al., 2016),

and as shown in this paper, a longer notice leads to shorter unemployment spells. Ta-

ble C4 describes the incidence of UI take-up in the sample, and Figure C4 describes

the timing of benefit exhaustion amongst UI takers. Figure C5 presents the data with

unemployment duration binned in 4 and 9-week intervals.
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TABLE C4: UNEMPLOYMENT INSURANCE TAKE-UP

Duration Observations Received UI Benefits

0 weeks 820 0.06
0-4 weeks 959 0.30
4-8 weeks 457 0.61
8-12 weeks 363 0.70
> 12 weeks 1562 0.82

Notes: This table reports the percentage of individuals in the baseline sample who reported receiving UI
benefits by the duration of unemployment.

FIGURE C4: TIMING OF BENEFIT EXHAUSTION
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Note: The figure presents the proportion of individuals who report having exhausted their UI benefits
by the duration of unemployment. The sample is restricted to individuals in the main analytical sample
who reported receiving UI benefits, and duration is binned in 12-week intervals.
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FIGURE C5: SURVIVAL AND EXIT RATES WITH ALTERNATIVE BINS
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(B) EXIT RATE
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(C) SURVIVAL RATE
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Note: Unemployment duration is binned in 4-week intervals for panels A and B, while it is binned in
9-week intervals for panels C and D. Panel A and C present the proportion of individuals who are un-
employed at the beginning of each interval. Panel B and D present the proportion of individuals exiting
unemployment in each interval amongst those who were still unemployed at the beginning of the inter-
val. Error bars represent 90% confidence intervals.
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APPENDIX D ROBUSTNESS CHECKS

In this subsection, I present a series of robustness checks.

D.1 Non-Parametric Estimates

As shown in the paper, the specified MH model is non-parametrically identified. Fig-

ure D1 presents the non-parametric estimate for the structural hazard alongside the

baseline estimate, which assumes a log-logistic functional form for the hazard. This fig-

ure shows that the non-parametric point estimates are roughly equivalent to the base-

line estimates. However, the standard errors are larger, specifically the standard error

associated with the last data point, which blows up dramatically.

D.2 Unweighted Sample

Figure D2 displays the data and estimates using the unweighted sample. Panel A

shows that the pattern of exit rates and how they vary by notice length is similar to

that observed in the weighted sample in Figure 1. Similarly, the estimates based on

the unweighted sample, presented in panel B, closely resemble the baseline estimates

shown in Figure 2. This suggests that observable characteristics have a limited role in

explaining the raw differences in exit rates between the two notice groups.

D.3 Alternative Notice Categories

As noted in Section II, the question on notice length in the DWS is categorical and

includes categories of no notice, <1 month, 1-2 months, and >2 months. So far, I have

only focused on the latter two categories, referred to as short and long notice. I now test

the robustness of my findings with respect to this restriction. First, I include individuals

who received no notice as a third group in the original estimation sample. Then, I
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FIGURE D1: NON-PARAMETRIC ESTIMATES
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Note: The figure compares non-parametric estimates of the structural hazard from the Mixed Hazard
model with baseline estimates that assume a log-logistic functional form for the structural hazard. Error
bars represent 90% confidence intervals.

FIGURE D2: DATA AND ESTIMATES USING THE UNWEIGHTED SAMPLE
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Note: The figure presents data and estimates for the unweighted analytical sample. Panel A displays the
exit rate from the data separately for long and short-notice workers. In panel B, the solid blue line shows
the estimated structural hazard from the Mixed Hazard model using unweighted moments, the dashed
red line shows the estimate using weighted moments, and the dotted black line represents the average
exit rate for short and long-notice workers in the data.
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FIGURE D3: ESTIMATES WITH ALTERNATIVE NOTICE CATEGORIES
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Note: Panel A presents the estimated hazard for the sample consisting of individuals who received no
notice, along with those who received notice periods of 1-2 months and >2 months, as in the main ana-
lytical sample. Panel B estimates are for individuals who received notice of <1 month, in addition to the
groups from the main analytical sample. J-Stat refers to the Sargan-Hansen statistic for overidentifying
restrictions.

repeat the process, adding individuals with <1 month’s notice as the third group.30 I

use the same covariates as before to fit the propensity score models using multinomial

logit and weight the data accordingly. Observations where the propensity scores fall

outside the 0.1 to 0.9 range are excluded. I then re-estimate the Mixed Hazard model

with three notice categories for both the augmented samples.

The estimates from the above exercise are presented in Figure D3. Panel A corre-

sponds to the sample where the third category is no notice, while panel B corresponds

to the sample where the third category is <1 month notice. After excluding extreme

30I do not include all four categories simultaneously for two reasons. The first, and less significant,
reason is that the overlap in propensity scores is already suboptimal with three categories and worsens
with four. The primary reason is that the exit rate in the first period for the <1 month group is lower
than for the no notice group, possibly due to selection, since separations with no notice may also include
voluntary quits. However, the first-period exit rates for both are lower than those for the 1-2 month and
>2 month notice groups.
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propensity score values, 7,122 of 12,061 observations remain for the data used in panel

A, and 5,667 of 5,898 observations remain for the data used in panel B. In both cases,

the estimates of structural duration dependence are qualitatively similar to the baseline

results—the structural hazard consistently exceeds the exit rate from the data, initially

decreasing, then increasing up to the third interval, and remaining constant thereafter.

However, in panel B, the estimated structural hazard increases less leading up to ben-

efit exhaustion compared to the baseline estimate. This could reflect differences in

patterns of heterogeneity or duration dependence across the samples. More impor-

tantly, because we have more than two notice categories, the model is over-identified.

With 3×4= 12 moment conditions and 8 parameters, there are 4 degrees of freedom.

The Sargan-Hansen J-statistic for testing overidentifying restrictions is reported in both

panels, along with the respective p-values.31 In both cases, the large p-values indicate

that there is no strong evidence against the null hypothesis.

D.4 Binning Unemployment Duration

Finally, a limitation of the application in the paper is the need to bin unemployment

durations into 12-week intervals due to the small sample size of the DWS and the po-

tentially noisy measurement of duration caused by retrospective bias. While Figure C5

shows that the patterns of how exit rates vary with duration and notice length are sim-

ilar when binning data into 4- or 9-week intervals, I now present estimates from the

MH model using unemployment duration data binned into 9-week intervals in Figure

D4. Once again, we uncover the same pattern in estimates of structural duration depen-

dence, with a decline from the first to the second interval, followed by a rise in the third

interval corresponding to 18-27 weeks, which aligns with UI exhaustion at 26 weeks. I

also present non-parametric estimates, which closely follow the log-logistic estimates.

31The estimated model in the main analysis is also over-identified due to the imposition of a log-logistic
functional form on the structural hazard, resulting in one free parameter. However, here we are testing
a more extensive set of overidentifying restrictions, with the caveat that the power of this test is lower.
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FIGURE D4: ESTIMATES WITH UNEMPLOYMENT DURATION BINNED IN 9-WEEK INTERVALS
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Note: The figure presents estimates from the Mixed Hazard model using data with unemployment du-
ration binned in 9-week intervals. The solid blue line represents estimates for the structural hazard
assuming the Log-Logistic functional form. The dashed red line represents non-parametric estimates,
while the dotted black line represents the observed exit rate from the data.

I conduct another exercise to evaluate the effect of interval sizes directly on estimates

from the MH model. Specifically, I take exit rates implied by the model for a given

data-generating process (DGP) and compute the exit rates that would be observed if

unemployment durations were binned into different-sized intervals. I then compare

how the estimates change with the size of the bins.

The data generating process (DGP) for this exercise is defined as follows: There are

two groups of notice, each with a probability of 0.5, and the first-period structural

hazards are set at 0.1 and 0.2 for the two groups, respectively. For periods after the first

(d > 1), the structural hazards, which are common to both groups, are generated in

four different cases using the Weibull function bkdd−1to ensure our conclusions are not

an artifact of a specific DGP. These four cases are: (1) increasing (b = 0.2, k = 1.2), (2)

decreasing (b = 0.2, k = 0.75), (3) constant (b = 0.15, k = 1), and (4) non-monotonic,

where the Weibull function is increasing as in (1) until d = 7 and then follows (2)

multiplied by 1.75. The unobserved type ν is a mixture of three Beta distributions:

ν1 ∼ Beta(0.1, 0.1) with probability 0.5, ν2 ∼ Beta(0.3,0.5) with probability 0.1, and
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ν3 ∼ Beta(0.25, 0.5) with probability 0.4. I generate the exit rates for 12 time periods,

bin them into intervals of four different sizes—1, 2, 3, and 4—and estimate the model

in each case.

The dashed black line in Figure D5 represents the profile of exit rates corresponding

to different bin sizes used in the estimation for the four DGPs from panels A-D. The

solid dark-grey line shows the estimated structural hazard in each case. Comparing the

estimates across different bin sizes in each panel, one can see that increasing the bin size

leads to potentially missing the full extent of changes in the structural hazard over time.

Specifically, when the structural hazard is increasing, the binned estimate increases

by less (compare column 4 to column 1 in panel A). Similarly, when the structural

hazard is decreasing, the binned estimate decreases by less (panel B). This is a direct

consequence of the binned exit rates not fully capturing the extent of changes in the

exit rates over time, making it difficult for the estimates using those exit rates to capture

the full dynamics.

However, note that regardless of bin size, the estimates are able to uncover the

broader trends in the structural hazard. This is because the estimates correspond to the

cumulative structural hazard within a given interval for the average type, represented

by the dotted red line on the plots. Specifically, the cumulative structural hazard is

defined as the probability of an individual exiting unemployment in a given interval,

provided that the individual hasn’t exited by the start of the interval.32 So, while the

estimates may miss some nuances within the intervals, the extent of what is missed is

limited to what would be missed if we were analyzing the true structural exit probabil-

ities in broader intervals. This is also evident from the implied average type for each

estimate presented in Figure D6. From this figure, it can be seen that the average type

in each panel falls similarly over time for different bin sizes, implying that we are able

32For instance, for a bin size of 2, the cumulative structural hazard corresponding to the second interval
for the average worker is given by: Pr(3≤ D ≤ 4|D ≥ 2, L,ν= µ) =ψ(3)µ+ [1−ψ(3)µ]ψ(4)µ.
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to capture the contribution of underlying heterogeneity in the observed exit rates very

closely, regardless of the bin size.

Overall, this shows that the assumptions of the model do not interact with bin sizes in

a way that leads to systematically biased estimates, ensuring that the estimates reported

in this paper correspond to meaningful underlying patterns.
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FIGURE D5: ESTIMATION ON BINNED SIMULATED DATA: HAZARD
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Note: The figure presents results from a robustness exercise evaluating the impact of binning data into
intervals. I calculate the moments used for estimation from the Mixed Hazard model with 12 durations.
These moments are then binned into intervals of lengths ranging from 1 to 4, and the model is estimated
using the binned moments. Along with the estimates of the structural hazard (dark grey solid line), I
present two additional quantities binned similarly for comparison. The dotted red line represents the true
structural cumulative hazard of exiting in the specific interval, while the black dashed line represents the
average observed hazard. 66



FIGURE D6: ESTIMATION ON BINNED SIMULATED DATA: AVERAGE TYPE
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Note: The figure presents results from a robustness exercise evaluating the impact of binning data into
intervals. I calculate the moments used for estimation from the Mixed Hazard model with 12 durations.
These moments are then binned into intervals of lengths ranging from 1 to 4, and the model is estimated
using the binned moments. The plots represent the average type at each duration, as implied by the
estimated structural hazard.
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APPENDIX E GENERALIZATION

The main identification result in the paper relies on two crucial assumptions: (i) the

notice length is independent of the worker type (conditional on observables), and (ii)

the structural hazard after the initial period does not vary with notice length. In this

section, I generalize the identification result showing that we can identify structural du-

ration dependence and the moments of heterogeneity distribution, provided we know

how the structural hazard following the initial period and the distribution of hetero-

geneity vary with notice length. Previously, the model operated under the assumption

that the distribution of heterogeneity and the structural hazards at later durations did

not vary with notice length. Now, we are considering alternative assumptions about

how these factors might vary. This is useful as it allows us to assess estimates under

different assumptions and compare them to the original results.

For brevity, I ignore observable characteristics while presenting the proof in this sec-

tion and work with a version of the model where an individual worker’s exit probability

is given by h(d|ν, L) = ψL(d)ν, with ν being exogenous. However, the result can be

straightforwardly extended to incorporate observable characteristics as in the model

with h(d|ν, L, X ) = ψL(d)φ(X )ν, under conditional independence. In fact, in the im-

plementation of this result in Section E.2, I do use exit rates weighted by the inverse of

propensity scores.

Unlike before, now we will not assume stationarity or independence; instead, we will

allow the distribution of heterogeneity and structural hazards after the initial period to

vary based on certain known parameters. In particular, for two lengths of notice ℓ and

ℓ′, define κd as the difference between the d th moment of ν conditional on ℓ′ and ℓ as

follows:
κd = µℓ′,d −µℓ,d

where µℓ,d = E(νd |ℓ). So κ1 is the difference between the average type of workers
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with ℓ′ and ℓ notice lengths. Additionally, define γd as the ratio of structural hazards at

duration d for two lengths of notice,

γd =
ψℓ′(d)
ψℓ(d)

The identification result presented below states that if for some D̄ we know κd for

d = 1, ..., D̄ and γd for d = 2, ..., D̄, we can identify the first D̄ structural hazards and

moments of type distribution for each notice length up to scale.33

E.1 General Identification Result

Theorem 2. For some ℓ,ℓ′, define κd = µℓ′,d − µℓ,d and γd = ψℓ′(d)/ψℓ(d). Then for

some D̄, if {κd}D̄d=1 and {γd}D̄d=2 are known, then the baseline hazards {ψl(d),ψℓ′(d)}D̄d=1

and the conditional moments of the type distribution {µℓ,d ,µℓ′,d}D̄d=1 are identified up to a

scale from {h(d|ℓ), h(d|ℓ′)}D̄d=1.

Proof. First note that we can write,

g(d|ℓ) =ψl(d)
d
∑

k=1

ck(ψℓ,d−1)µℓ,k (13)

where ψℓ,d−1 = {ψl(s)}d−1
s=1 , ck(ψℓ,0) = 1, and

ck(ψℓ,d−1) =























ck(ψℓ,d−2) for k = 1

ck(ψℓ,d−2)−ψl(d − 1)ck−1(ψℓ,d−2) for 1< k ≤ d

0 for k > d

Now, we can prove the statement of the theorem by induction. First, note that the

33Alternatively, we could know κd for d = 2, ..., D̄ and γd for d = 1, ..., D̄. Also, in theory, the choice
of defining γd and κd as a ratio or a difference does not impact the proof of identification. In this
case, I define κd as a difference and γd as a ratio for the convenience of varying these parameters when
examining the changes in estimates.
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statement is true for D̄ = 1. To see this, note that

g(1|ℓ) =ψl(1)µℓ,1 g(1|ℓ′) =ψℓ′(1)(µℓ,1 +κ1)

Normalizing µℓ,1 = 1, we can solve for ψl(1) = g(1|ℓ) and ψℓ′(1) =
g(1|ℓ′)
1+κ1

.

Now, let us assume that the statement is true for D̄ = d − 1. Then we can identify

{ψl(s),ψℓ′(s)}d−1
s=1 and {µℓ,s,µℓ′,s}d−1

s=1 from {g(s|ℓ), g(s|ℓ′)}d−1
s=1 . To complete the proof,

we need to prove that the statement is true for D̄ = d as well.

Denote Γd =
∏d

s=1 γs and Ψℓ(d) =
∏d

s=1ψℓ(s). Now note that,

g(d|ℓ) =ψl(d)
d
∑

k=1

ck(ψℓ,d−1)µℓ,k

=ψl(d)

�

d−1
∑

k=1

ck(ψℓ,d−1)µℓ,k + cd(ψℓ,d−1)µℓ,d

�

=ψl(d)

�

d−1
∑

k=1

ck(ψℓ,d−1)µℓ,k + (−1)d−1Ψℓ(d − 1)µℓ,d

�

From the above equation we can solve for µℓ,d as follows:

µℓ,d =
(−1)d

Ψℓ(d − 1)

�

d−1
∑

k=1

ck(ψℓ,d−1)µℓ,k −
g(d|ℓ)
ψl(d)

�

(14)

Using the fact that µℓ′,d = κd +µℓ,d , we can write g(d|ℓ′) as follows:

g(d|ℓ′) =ψℓ′(d)

�

d−1
∑

k=1

ck(ψℓ′,d−1)µℓ′,k + (−1)d−1Ψℓ′(d − 1)(κd +µℓ,d)

�

By plugging in µℓ,d from equation (14) in the above expression, we can solve forψℓ′(d)

as follows:

ψℓ′(d) =
g(d|ℓ′)− Γd g(d|ℓ)

∑d−1
k=1 ck(ψℓ′,d−1)µℓ′,k − Γd−1

∑d−1
k=1 ck(ψℓ,d−1)µℓ,k + (−1)d−1κdΨℓ′(d − 1)

70



Plugging this back in expression for µℓ′,d , we can solve for

µℓ′,d =
(−1)d

Ψℓ′(d − 1)

�

g(d|ℓ′)Γd−1

∑d−1
k=1 ck(ψℓ,d−1)µℓ,k − Γd g(d|ℓ)

∑d−1
k=1 ck(ψℓ′,d−1)µℓ′,k − (−1)d−1 g(d|ℓ′)κdΨℓ′(d − 1)

g(d|ℓ′)− Γd g(d|ℓ)

�

So as long as the denominators in the expressions for ψℓ′(d) and µℓ′,d are not zero, we

would have identification.

We can see that with κd = 0 for d = 1, .., D̄ and γd = 1 for d = 2, .., D̄, the above

theorem is equivalent to the result in the main text. Also, note that the theorem can

more generally be applied to situations with other observable characteristics. For in-

stance, with κd = 0 for d = 1, .., D̄ and γd = γ for d = 1, .., D̄, the above is equivalent to

the discrete MPH model. In the following subsection, I investigate how the estimates

of structural hazard vary under different assumptions on κd and γd .

E.2 Implementation

In our estimation, we utilized two lengths of notice, 1-2 months (S) and >2 months

(L). Let’s define κd = µL,d−µS,d and γd =ψL(d)/ψS(d). For our baseline estimates, we

assumed that the distribution of heterogeneity for individuals with these different notice

lengths was identical, i.e., κd = 0 for all d. We also assumed that after the first period,

the structural hazards for both the groups were the same, so γd = 1 for d > 1. I now

study how our estimates change if the underlying distribution of heterogeneity and/or

the structural hazards after the initial period are different for workers with different

lengths of notice. In particular, I perform the following three exercises.

1. Allow average type to vary

I relax the assumption that notice length is independent of a worker’s type and let the

mean of the heterogeneity distribution vary across the two groups. I assume that apart

from the mean, the rest of the shape of the distribution for the two groups is identical.

Since we have D̄ = 4, this implies that in the 2nd, 3rd, and 4th central moment, the

71



FIGURE E1: ALLOW AVERAGE TYPE TO VARY
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Note: The figure presents results from the estimation of a more generalized Mixed Hazard model, where
the mean of the heterogeneity distribution for individuals with different lengths of notice is allowed to
vary according to the parameter κ1. Panel A presents the residuals from GMM estimation for different
values of κ1. Panel B presents the structural hazard estimates from the ten best models with the lowest-
valued residuals (light grey lines), compared to the baseline estimate (solid line) and the observed hazard
in the data (dashed line).

variance, skewness, and kurtosis for the two groups are identical. Scale changes would

impact the non-central moments, so all four κds will be non-zero. Denote central mo-

ments by µ̃. Note that, µ̃2 = µ2 −µ2
1. Then since we need µ̃S,2 = µ̃L,2,

µS,2 −µ2
S,1 = µS,2 +κ2 − (µS,1 +κ1)

2→ κ2 = κ1(κ1 + 2µS,1)

Similarly, noting that µ̃3 = µ3 − 3µ1µ2 + 2µ3
1 and setting µ̃S,3 = µ̃L,3, implies κ3 =

κ1(κ2
1 + 3κ1µS,1 + 3µS,2). And since, µ̃4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1, then setting

µ̃S,4 = µ̃L,4, we would have κ4 = κ1(κ3
1 + 4κ2

1µS,1 + 6κ1µS,2 + 4µS,3).

Now, assuming γd = 1 for d > 1 and normalizing µS,1 = 1, I reestimate the model

with κ1 values spaced at 0.01 intervals within the range [−0.1,0.1].34 κ2,κ3 and κ4

34For values beyond this interval, the model fit deteriorates drastically, and the estimated moments of
the heterogeneity distribution blow up in either direction.
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FIGURE E2: ALLOW STRUCTURAL HAZARDS AFTER THE FIRST PERIOD TO VARY
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Note: The figure presents results from the estimation of a more generalized Mixed Hazard model, where
the structural hazard after the initial period for individuals with different lengths of notice is allowed to
vary according to the parameter γ. Panel A presents the residuals from GMM estimation for different
values of γ. Panel B presents the structural hazard estimates from the 10 best models with the lowest-
valued residuals (light grey lines), compared to the baseline estimate (solid line) and the observed hazard
in the data (dashed line).

are defined as above. Residuals from this exercise are presented in panel A of Figure

E1, from which we can see that the residual-minimizing value of κ is close to zero. In

panel B, I present the estimates for structural duration dependence for the values of κ

from the ten models with the lowest residuals. Results from this exercise suggest that

the assumption κ= 0 is not unreasonable and likely does not affect the conclusions.

2. Allow structural hazards after the first period to vary

Now, I assume notice length to be independent of worker type but allow structural

hazards beyond the initial period to vary for workers with different lengths of notice up

to some constant γ. This corresponds to assuming κd = 0 for d = 1, .., D̄ and γd = γ for

d = 2, .., D̄. I estimate the model for values of γ spaced at intervals of 0.01 within the

range [0.9,1.1]. Results from this exercise are presented in Figure E2. As before, panel

A shows model residuals for different γ values, while panel B presents the estimates for

structural duration dependence for the values of γ from the ten models with the lowest

residuals. As we can see, the residual-minimizing value of γ is close to one, giving
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support to the assumption γ= 1.

3. Allow the average type and structural hazards after the first period to vary

Finally, I create a grid for values of κ and γ used in the above two exercises and

reestimate the model for each point in the grid. Panel A of Figure E3 presents the

residuals for different values in the grid, while panel B of Figure E3 shows the estimates

for the set of κ and γ values that result in the 25 models with the lowest residuals.

Mirroring the results from the above two exercises, the findings indicate no significant

mean differences between short- and long-notice groups, nor a difference in structural

hazards for long- vs. short-notice workers beyond the initial period.

FIGURE E3: ALTERNATIVE ASSUMPTIONS ON STRUCTURAL HAZARDS AND HETEROGENEITY
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Note: The figure presents results from the estimation of a more generalized Mixed Hazard model. The
mean of the heterogeneity distribution for individuals with different lengths of notice is allowed to vary
according to the parameter κ1. The structural hazard after the initial period for individuals with different
lengths of notice is allowed to vary according to the parameter γ. Panel A presents the residuals from
GMM estimation for different values of κ1 and γ. Panel B presents the structural hazard estimates from
the 25 best models with the lowest-valued residuals (light grey lines), compared to the baseline estimate
(solid line) and the observed hazard in the data (dashed line).
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APPENDIX F SEARCH MODEL SIMULATION

In this section, I simulate data from the search model presented in the main text. To

incorporate multiple notice periods, I let the offer rate in the first period be different

for long (L) and short (S) notice individuals. I set νH = 1, νL = 0.5 and π = 0.5,

δL(1) = 1.25,δS(1) = 1, and δ(d) = 0.95 for d = 2, 3,4. The rest of the parameters

are set as in the calibration of the model in the main text. I assume there are 3000

individuals, half of whom receive the L length notice. I simulate data on exit rates for

this model 1000 times. The average of estimates for the structural hazard is presented

in Figure F1, while the distribution of the estimates is presented in Figure F2.

FIGURE F1: SIMULATION: AVERAGE ESTIMATE
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Note: The solid blue line presents the average estimate from 1000 simulations of the search model. The
dashed red line presents the structural duration dependence E[h(d|ν)] implied by the model. While the
dotted black line presents the observed structural duration dependence E[h(d|ν)|D ≥ d] implied by the
model.
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FIGURE F2: ESTIMATES USING SIMULATED DATA FROM THE SEARCH MODEL
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Note: The figure presents the normalized distribution of structural duration dependence estimated on
simulated data from the search model. The vertical lines represent the mean of the distribution for each
structural hazard. Standard normal density is overlaid for reference.
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