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Final Exam Review



Final Exam
‚ Thursday, 1-2.50 pm.

‚ 90 minutes, 20 points

‚ Closed book, can use a calculator

‚ No formula sheet

‚ Not cumulative

‚ Study guide and sample exam

‚ Sample questions for last module
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Topics Covered
Linear Regression Model (75-80%)

‚ Ordinary Least Squares & Goodness of Fit
‚ OLS Assumptions for Causal Inference
‚ Inference (p-values, t-stats, confidence intervals)
‚ Multiple Regression: Omitted variable bias, AdjustedR2

‚ Categorical variables, interaction terms
‚ Quadratic and Log Functional Forms

Additional Topics (20-25%)
‚ Experiments & Quasi-experimental methods
‚ Differences-in-Differences
‚ Big Data & Machine Learning
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Linear Regression Model
Start by assuming a linear relationship between X and Y :

Yi “ β0 ` β1Xi ` ui E puiq “ 0

‚ Estimate using Ordinary Least Squares (OLS) method,
which minimizes the sum of squared errors

n
ÿ

i“1

û2
i “

n
ÿ

i“1

pYi ´ Ŷiq
2

‚ Under the exogeneity assumption, E pu|X q “ E puq “ 0, can
interpret β1 as the causal impact of X on Y
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Test Scores and Class Size
‚ Predicted values/residuals from the

fitted line:
ˆtestscr “ 698.93 ´ 2.28 ¨ str

‚ Interpret the output
‚ Coefficients
‚ Statistical significance

(t-stats, p-values)
‚ R2

‚ Exogeneity assumption:
E pui |STRiq “ E puiq “ 0
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Omitted Variable Bias
Consider the following linear regression model:

Y “ β0 ` β1X ` u

‚ Here, u captures omitted factors that impact Y .

‚ If u is correlated with X , the exogeneity assumption fails
and OLS estimates are biased.

β̂1 “ β1 `
CovpX ,uq

VarpX q

‚ Strength and direction of bias depends on CovpX ,uq
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Omitted Variable Bias

Y “ β0 ` β1X ` u

Note that omitted variable bias only occurs when both of the
following are true:

(1) The omitted variable is correlated with X

(2) The omitted variable Ñ Y
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Omitted Variable Bias
In our example:

testscr “ β0 ` β1str ` u

Omitting comp_stu from this model will probably overestimate
the impact of str .

This is because we expect comp_stu to positively impact testscr
and Covpcomp_stu, strq ă 0.

So comp_stu being omitted leads to Covpstr ,uq ă 0, hence from
the OVB formula β̂1 ă β1.
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Test Scores and Class Size
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Multiple Regression Model

Y “ β0 ` β1X1 ` β2X2 ` u

‚ Assumptions: (1) random sample, (2) no large outliers, (3)
no perfect multicollinearity, (4) E pu|X1,X2q “ 0

‚ Under these assumptions, β1 captures the causal effect of
X1 keeping X2 constant, and β2 captures the causal effect
of X2 keeping X1 constant.
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Control Variables
‚ While there are cases where we might want to evaluate
the effect of both the variables, it is hard to find exogenous
variables

‚ A really good use of the multiple regression model is to
instead control for omitted variableW while trying to
estimate the causal effect of X

Y “ β0 ` β1X ` β2W ` u
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Control Variables

Y “ β0 ` β1X ` β2W ` u

‚ So instead of assumption (4), we can assume conditional
mean independence

E pu|X ,W q “ E pu|W q

‚ The idea is that once you control for theW , X becomes
independent of u

‚ Under this modified assumption, we can interpret β1 as the
causal effect of X while controlling forW
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Adjusted R2

R2 never decreases when an explanatory variable is added

An alternative measure called Adjusted R2

AdjustedR2 “ 1 ´
RSS{pn ´ k ´ 1q

TSS{pn ´ 1q

where k is the number of variables.

AdjustedR2 only rises if RSS declines by a larger percentage than
the degrees of freedom (n ´ k ´ 1).
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Dummy Variables
What if the independent variable is a binary variable that takes
two values 1 and 0?

Y “ β0 ` β1D ` u

Taking conditional expectation (assuming exogeneity):

E rY |D “ 1s “ β0 ` β1 ¨ 1 “ β0 ` β1

E rY |D “ 0s “ β0 ` β1 ¨ 0 “ β0

So,
β1 “ E rY |D “ 1s ´ E rY |D “ 0s
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ACS Data: Gender Wage Gap

Wages
Intercept 67,220.17˚˚˚

(439.87)

Female ´14,661.12˚˚˚

(637.27)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Dummy Variables in Multiple Regression

Wages “ β0 ` β1Age ` β2Female ` u

Taking conditional expectation (assuming exogeneity):

E rWages|Age,Female “ 1s “ pβ0 ` β2q ` β1Age

E rWages|Age,Female “ 0s “ β0 ` β1Age
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ACS Data: Wages and Age
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Interaction Terms
We can also include interaction terms in our model as follows:

Wages “ β0 ` β1Age ` β2Female ` β3Female ˆAge ` u

Taking conditional expectation (assuming exogeneity):

E rWages|Age,Female “ 1s “ pβ0 ` β2q ` pβ1 ` β3qAge

E rWages|Age,Female “ 0s “ β0 ` β1Age

Now the impact of X on Y varies with D .
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ACS Data: Wages and Age
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Interaction of Two Dummy Variables

wages “ β0 ` β1Female ` β2Hispanic ` β3Female ˆHispanic ` u

Average wages for Non-Hispanic Males:

E pwages|Hispanic “ 0,Female “ 0q “ β0

Average wages for Non-Hispanic Females:

E pwages|Hispanic “ 0,Female “ 1q “ β0 ` β1
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Interaction of Two Dummy Variables

wages “ β0 ` β1Female ` β2Hispanic ` β3Female ˆHispanic ` u

Average wages for Hispanic Males:

E pwages|Hispanic “ 1,Female “ 0q “ β0 ` β2

Average wages for Hispanic Females:

E pwages|Hispanic “ 1,Female “ 1q “ β0 ` β1 ` β2 ` β3
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ACS Data: Gender and Ethnicity

Wages
Intercept 70,179.09˚˚˚

(473.52)

Female ´16,046.81˚˚˚

(683.42)

Hispanic ´19,367.71˚˚˚

(1,211.46)

Female X Hispanic 8,163.75˚˚˚

(1,788.04)

Observations 17,578
R2 0.05

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Fitting a Line
Linear relationship:

Ŷ “ β̂0 ` β̂1X

Take the derivative:
dŶ

dX
“ β̂1 Ñ dŶ “ β̂1dX

Can think of d as ‘change in’: One unit change in X , associated
with β1 units change in Y .

Impact of X on Y constant with X .
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Fitting a Curve
Quadratic relationship:

Ŷ “ β̂0 ` β̂1X ` β̂2X
2

Take the derivative:

dŶ

dX
“ β̂1 ` 2β̂2X

Now the impact of X on Y changes with X .

Remember: Derivative captures the slope of the tangent line.
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ACS Data: Wages and Age
ˆwage “ ´52207 ` 4775.64 ¨ age ´ 49.493 ¨ age2
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Log Functional Forms
‚ Log-transformation leads to interpretation of regression
coefficients in % changes than unit changes which can
sometimes be more informative

‚ Can think of change in log of X as the relative change in X
with respect to its original value

d

dX
logpX q “

1
X

Ñ d logpX q “
dX

X

In which case 100 ˆ d logpX q represents % change in X
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Log Functional Forms: Interpretation
Three possible models:

1. Level-Log: Ŷ “ β̂0 ` β̂1logpX q

2. Log-Level: ˆlogpY q “ β̂0 ` β̂1X

3. Log-Log: logpŶ q “ β̂0 ` β̂1 logpX q
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Log-Level Model
Log Wages

Intercept 10.31˚˚˚

(0.02)

Age 0.01˚˚˚

(0.001)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

1 year increase in age leads to 1% increase in predicted wages.
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Log-Log Model
Log Wages

Intercept 8.99˚˚˚

(0.08)

Log Age 0.49˚˚˚

(0.02)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

1% increase in age leads to 0.49% increase in predicted wages.
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A Few Last Words

Good luck and take care!

Thanks for a great semester!

Have a great break, and don’t be a stranger!
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