ECON 340
Economic Research Methods

Div Bhagia

Final Exam Review



Final Exam

Thursday, 1-2.50 pm.

90 minutes, 20 points

Closed book, can use a calculator

No formula sheet

Not cumulative

Study guide and sample exam

Sample questions for last module
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Topics Covered

Linear Regression Model (75-80%)

e Ordinary Least Squares & Goodness of Fit
OLS Assumptions for Causal Inference
Inference (p-values, t-stats, confidence intervals)
Multiple Regression: Omitted variable bias, AdjustedR?
Categorical variables, interaction terms
Quadratic and Log Functional Forms

Additional Topics (20-25%)
e Experiments & Quasi-experimental methods

e Differences-in-Differences
¢ Big Data & Machine Learning
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Linear Regression Model
Start by assuming a linear relationship between X and Y
Yi = Bo+ B1 X+ u; E(u;) =0

¢ Estimate using Ordinary Least Squares (OLS) method,
which minimizes the sum of squared errors

M- Y- VP
i=1 i=1

e Under the exogeneity assumption, E(u|X) = E(u) =0, can
interpret f; as the causal impact of X on Y
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Test Scores and Class Size

Dependent variable: ¢ Predicted values/residuals from the

___________________________ fitted line:
_______________________ vestser testscr = 698.93 — 2.28 - str
str =2.280%xx

(0.480) ¢ Interpret the output
Constant 698 . 933%x*x * Coefficients

(9.467) e Statistical significance

(t-stats, p-values)
---------------------------------------- ° R2
Observations 420
R2 0.051 ¢ Exogeneity assumption:
Adjusted R2 0.049
E(u;|STR;) = E(u;) =0

Note: *p<0.1; **p<0.05; ***p<0.01
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Omitted Variable Bias

Consider the following linear regression model:

Y = ﬂo + /51X +u
e Here, u captures omitted factors that impact Y.

e If uis correlated with X, the exogeneity assumption fails
and OLS estimates are biased.

5 Cov (X, u)
Br =B+ Var(X)

e Strength and direction of bias depends on Cov(X, u)
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Omitted Variable Bias

Y =8+ X+u

Note that omitted variable bias only occurs when both of the
following are true:

(1) The omitted variable is correlated with X

(2) The omitted variable — Y

6/29



Omitted Variable Bias

In our example:
testscr = By + Bistr + u

Omitting comp_stu from this model will probably overestimate
the impact of str.

This is because we expect comp_stu to positively impact testscr
and Cov(comp_stu, str) < 0.

So comp_stu being omitted leads to Cov(str, u) < 0, hence from

the OVB formula f3; < f;.
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Test Scores and Class Size

Dependent variable:

testscr
(1) 2
str —2.280%%* —1.593%*x*
(0.480) (0.493)
comp_stu 65.160%**
(14.351)
Observations 420 420
R2 0.051 0.096
Adjusted R2 0.049 0.092
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Multiple Regression Model

Y =Po+ p1 X1+ P Xo+u
e Assumptions: (1) random sample, (2) no large outliers, (3)
no perfect multicollinearity, (4) E(u|X;, X;) =0

e Under these assumptions, 8; captures the causal effect of
X; keeping X, constant, and f3, captures the causal effect
of X, keeping X; constant.
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Control Variables

¢ While there are cases where we might want to evaluate
the effect of both the variables, it is hard to find exogenous
variables

e A really good use of the multiple regression model is to
instead control for omitted variable W while trying to
estimate the causal effect of X

Y = B¢+ B X+ BW+u
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Control Variables

Y =Bo+ B X+ BW+u

¢ So instead of assumption (4), we can assume conditional
mean independence

E(ulX, W) = E(u|W)

e The idea is that once you control for the W, X becomes
independent of u

e Under this modified assumption, we can interpret 3; as the

causal effect of X while controlling for W )
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Adjusted R?

R? never decreases when an explanatory variable is added

An alternative measure called Adjusted R?

RSS/(n—k —1)
TSS/(n—1)

AdjustedR? = 1 —

where k is the number of variables.

AdjustedR? only rises if RSS declines by a larger percentage than
the degrees of freedom (n — k — 1).
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Dummy Variables

What if the independent variable is a binary variable that takes
two values 1 and 0?

Y=00+pP1D+u

Taking conditional expectation (assuming exogeneity):
E[YID=1]=Bo+p1 1=+ b1
E[Y|D =0] = o+ B1-0=

So,

pB1=E|Y|D=1]—-E[|Y|D = 0]
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ACS Data: Gender Wage Gap

Wages

Intercept 67,220.17***
(439.87)

Female —14,661.12%**
(637.27)

Observations 17,578

R? 0.03

Note: *p<0.1; **p<0.05; **p<0.01
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Dummy Variables in Multiple Regression

Wages = B, + B1Age + BoFemale + u

Taking conditional expectation (assuming exogeneity):

E[Wages|Age, Female = 1] = (By + f>) + b1 Age
E[Wages|Age, Female = 0] = B, + B Age
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ACS Data: Wages and Age

80000 1

Predicted Wages

40000 1

70000 1

60000 1

50000 1

30 40 50
Age
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Interaction Terms

We can also include interaction terms in our model as follows:

Wages = By + B, Age + BoFemale + B3Female x Age + u

Taking conditional expectation (assuming exogeneity):

E[Wages|Age, Female = 1] = (By + B2) + (B1 + B3)Age
E[Wages|Age, Female = 0] = B, + B Age

Now the impact of X on Y varies with D.
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ACS Data: Wages and Age
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Interaction of Two Dummy Variables

wages = 3o + 1 Female + ByHispanic + [33Female x Hispanic + u

Average wages for Non-Hispanic Males:
E (wages|Hispanic = 0, Female = 0) = 3,
Average wages for Non-Hispanic Females:
E (wages|Hispanic = 0, Female = 1) = By + [3;
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Interaction of Two Dummy Variables

wages = 3o + 1 Female + ByHispanic + [33Female x Hispanic + u

Average wages for Hispanic Males:
E (wages|Hispanic = 1, Female = 0) = By + b5
Average wages for Hispanic Females:
E (wages|Hispanic =1, Female = 1) = By + 3; + B + 3
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ACS Data: Gender and Ethnicity

Wages
Intercept 70,179.09***
(473.52)
Female —16,046.81***
(683.42)
Hispanic —19,367.71*
(1,211.46)
Female X Hispanic 8,163.75***
(1,788.04)
Observations 17,578
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Fitting a Line

Linear relationship: o
Y =g+ 1 X

Take the derivative:
dy

X =B, > dY = fdX

Can think of d as ‘change in": One unit change in X, associated
with B; units change in Y.

Impact of X on Y constant with X.
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Fitting a Curve

Quadratic relationship:
Y = By + X + BoX°

Take the derivative:

S

dY A
ax B1 +2B,X
Now the impact of X on Y changes with X.

Remember: Derivative captures the slope of the tangent line.
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ACS Data: Wages and Age

wége = —52207 + 4775.64 - age — 49.493 - age?

70000 1
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Log Functional Forms

e |Log-transformation leads to interpretation of regression
coefficients in % changes than unit changes which can
sometimes be more informative

e Can think of change in log of X as the relative change in X

with respect to its original value
d 1 dX
—log(X) = — —> dlog(X) = —

In which case 100 x dlog(X) represents % change in X
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Log Functional Forms: Interpretation

Three possible models:
1. Level-Log: Y =f,+ /§1log(X)
2. Log-Level:  log(Y) = Py + P X

3. Log-Log: log(Y) = By + P log(X)
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Log-Level Model

Log Wages

Intercept 10.37%**

(0.02)
Age 0.01%*

(0.001)
Observations 17,578
R? 0.03
Note: *p<0.1; **p<0.05; **p<0.01

1 year increase in age leads to 1% increase in predicted wages.
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Log-Log Model

Log Wages

Intercept 8.99%**

(0.08)
Log Age 0.49***

(0.02)
Observations 17,578
R? 0.03
Note: *p<0.1; **p<0.05; **p<0.01

1% increase in age leads to 0.49% increase in predicted wages.
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A Few Last Words

Good luck and take care!
Thanks for a great semester!

Have a great break, and don’t be a stranger!
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