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Lecture 16: Prediction vs. Causal Inference



Ordinary Least Squares (OLS)
What is the main goal of Ordinary Least Squares (OLS)?

(a) Choose the line that passes through as many data points as
possible

(b) Choose the values for slope and intercept that minimize
the sum of squared residuals

(c) Choose the line that minimizes the absolute distance
between the predicted values and data

1 / 19



Ordinary Least Squares (OLS)
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Fitted line:

Ŷi “ β̂0 ` β̂1X
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Goodness of Fit: The R2

Total Sum of Squares: TSS “
řn

i“1pYi ´ Ȳ q2

Explained Sum of Squares: ESS “
řn

i“1pŶi ´ Ȳ q2

Residual Sum of Squares: RSS “
řn

i“1pYi ´ Ŷiq
2 “

řn
i“1 û

2
i

TSS “ ESS `RSS

A measure of goodness of fit:

R2 “
ESS

TSS
“ 1 ´

RSS

TSS
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Goodness of Fit: The R2

Are the following statements true or false?

(a) R2 ranges from 0 to 1.

(b) A higher R2 indicates that the regression line is a better fit.

(c) A higher R2 indicates that X explains a large percent of
variation in Y .

(d) If the slope β̂1 “ 0, then R2 “ 1.
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How to interpret the coefficients?
Fitted line:

ˆtestscr “ 698.93 ´ 2.28 ¨ str
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How to interpret the coefficients?
Fitted line:

ˆtestscr “ 698.93 ´ 2.28 ¨ str

‚ Intercept: Predicted test score is 698.93 for a school with
str “ 0. (Doesn’t always make sense!)

‚ Slope: One more student per teacher lowers the predicted
test score by 2.28. How?
Alternatively: Schools in our sample that had one more
student per teacher on average had an average test score
that was 2.28 points lower.
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Two Different Questions

‚ I am trying to figure out what are the test scores for a
particular school, but I can only observe it’s class size. If my
linear model captures the data well, I could use it to predict
the test score for this school.

‚ But now, what if the Department of Education wants to
know whether reducing class size across schools will lead
to an improvement in test scores. Can my model answer
this question?
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Two Different Questions

‚ First question concerns prediction: using the observed
value of some variable to predict the value of another
variable

‚ The second concerns causal inference: using data to
estimate the effect of changes in one variable on another
variable

‚ To attach a causal interpretation to β1, we need additional
assumptions
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Simple Linear Regression Model
Assumption 1 (Linearity): The relationship between X and Y is
given by:

Y “ β0 ` β1X ` u

Here, u is the mean zero error term, E puq “ 0.

There is a linear (in parameters) relationship between X and Y
with some error that is on average zero.

Can think of u as the impact of omitted factors on Y .
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Assumptions for Causal Inference

Assumption 2 (Random Sample): The observed data pYi ,Xiq for
i “ 1,2, ...,n represent a random sample of size n from the
above population model.

Assumption 3 (No large outliers): Fourth moments (or Kurtosis) of
X and Y are finite.
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Why we don’t want outliers
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Assumptions for Causal Inference

Assumption 4 (Mean Independence/Exogeneity): The expected
value of the error term is the same conditional on any value of
the explanatory variable.

E pu|X q “ E puq “ 0

This assumption is crucial for attaching a causal interpretation
to our regression coefficients.
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Reminder: Independence and Uncorrelatedness

‚ Two random variables are independent if f py |xq “ f pyq for
all x and y or equivalently E pY |X q “ E pY q.

‚ Two random variables are uncorrelated if the correlation
between them is 0.

‚ Independence Ñ uncorrelatedness, if two variables are
independent then they are uncorrelated as well
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The Exogeneity Assumption

Y “ β0 ` β1X ` u Exogeneity : E pu|X q “ E puq “ 0

‚ Omitted factors do not dependent on values of X

‚ In other words, the error term is uncorrelated with the
independent variable X

‚ Why do we need this assumption to attach a causal
interpretation to β1?
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When the exogeneity assumption fails

Y “ β0 ` β1X ` u

‚ Y : test scores, X : class-size, u : teacher quality

‚ If schools with higher student-teacher ratios have worse
teachers (Ò X , Ó u)

‚ Then, if we see test scores decline with class size (Ò X , Ó Y ),
hard to say if it’s due to teacher quality or class size.
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The Exogeneity Assumption
Y “ β0 ` β1X ` u

Let’s take the expectation of Y conditional on X :
E pY |X q “ β0 ` β1X ` E pu|X q

If the exogeneity assumption holds, E pu|X q “ 0, then
E pY |X q “ β0 ` β1X

So change in Y in response to one unit change in X ,
E pY |X “ x ` 1q ´ E pY |X “ xq “ β1
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When the exogeneity assumption fails

E pY |X “ xq “ β0 ` β1x ` E pu|X “ xq (1)
E pY |X “ x ` 1q “ β0 ` β1px ` 1q ` E pu|X “ x ` 1q (2)

Subtracting equation (1) from (2):

E pY |X “ x`1q´E pY |X “ xq “ β1`rE pu|X “ x ` 1q ´ E pu|X “ xqs
looooooooooooooooooomooooooooooooooooooon

Confounding effect of u
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Linear Regression Model
Assumptions 1-4 imply that:

1. OLS estimators are unbiased, that is

E pβ̂0q “ β0, E pβ̂1q “ β1

2. In large samples, OLS estimators are normally distributed
due to the Central Limit Theorem (CLT)

17 / 19



Sampling Distribution for OLS Estimators
Under Assumptions 1-4, in large samples (n ą 100),

β̂0 „ Npβ0,σ2
β̂0

q, β̂1 „ Npβ1,σ2
β̂1

q

where
σ2
β̂1

“
1
n

Var rpXi ´µX qui s

VarpXiq
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Sampling Distribution for OLS Estimators
Under Assumptions 1-4, in large samples (n ą 100),

β̂0 „ Npβ0,σ2
β̂0

q, β̂1 „ Npβ1,σ2
β̂1

q

where
σ2
β̂1

“
1
n

Var rpXi ´µX qui s

VarpXiq

Can you think why the variance of β̂1 decreases as the variance
of X increases?
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Variance of β̂1 and X
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