ECON 340 Economic Research Methods

Div Bhagia

Lecture 18
Omitted Variable Bias, Multiple Regression Model

Test Scores and Class Size

```
Dependent variable:
                        testscr
str
                       -2.280***
                        (0.480)
Constant
                      698.933***
                        (9.467)
Observations
                          420
R2
                         0.051
Adjusted R2
                         0.049
Note:
             *p<0.1; **p<0.05; ***p<0.01
```

- School districts with lower student-teacher ratios tend to have higher test scores
- However, students from districts with small classes may have other advantages that help them perform well
- Omitted factors (e.g. student characteristics) can make the OLS estimator biased
- Today's lecture: *omitted variable bias* and *multiple regression*, a method that can eliminate this bias

Consider the following linear regression model:

$$Y = \beta_0 + \beta_1 X + u$$

Omitted variable bias occurs when both conditions are true:

- (1) The omitted variable is correlated with X
- (2) The omitted variable $\rightarrow Y$

In our example:

$$TestScore = \beta_0 + \beta_1 \cdot STR + u$$

Which of these omitted factors will lead to bias?

- (a) percentage of English learners
- (b) time of day when tests were conducted
- (c) parking lot space per pupil
- (d) computers per student

$$Y = \beta_0 + \beta_1 X + u$$

- Remember *u* represents all factors, other than *X*, that are determinants of *Y*.
- Omitted Variable Bias means that the exogeneity assumption E(u|X) = 0 doesn't hold.
- If $E(u|X) \neq 0$, OLS estimator is biased.

When $E(u|X) \neq 0$,

$$\hat{eta}_1 = eta_1 + rac{ extit{Cov}(X,u)}{ extit{Var}(X)}$$

Direction and strength of bias depends on the correlation between u and X.

In our example:

$$TestScore = \beta_0 + \beta_1 \cdot STR + u$$

What should be the direction of bias due to the following omitted variables?

- (a) percentage of English learners
- (b) computers per student

Multiple Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

- Again can be used for both purposes, causal inference and prediction
- As before we need the data to come from a random sample and no large outliers, but now in addition we also need that X_1 and X_2 are not perfectly multi collinear.
- Moreover, we can modify the mean independence to:

$$E(u|X_1,X_2)=0$$
 8 / 15

Multiple Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

- Assumptions: (1) random sample, (2) no large outliers, (3) no perfect multicollinearity, (4) $E(u|X_1, X_2) = 0$
- Under these assumptions, β_1 captures the causal effect of X_1 keeping X_2 constant, and β_2 captures the causal effect of X_2 keeping X_1 constant.

Control Variables

- While there are cases where we might want to evaluate the effect of both the variables, it is hard to find exogenous variables
- A really good use of the multiple regression model is to instead control for omitted variable W while trying to estimate the causal effect of X

$$Y = \beta_0 + \beta_1 X + \beta_2 W + u$$

Control Variables

$$Y = \beta_0 + \beta_1 X + \beta_2 W + u$$

• So instead of assumption (4), we can assume *conditional* mean independence

$$E(u|X, W) = E(u|W)$$

- The idea is that once you control for the W, X becomes independent of u
- Under this modified assumption, we can interpret β_1 as the causal effect of X while controlling for W

In Summary

$$TestScore = \beta_0 + \beta_1 \cdot STR + \beta_2 \cdot comp_stu + u$$

Under assumption:

$$E(u|STR, comp_stu) = 0$$

 β_1 causal impact of *STR*, and β_2 causal impact of *comp_stu*

Under conditional independence:

$$E(u|STR, comp_stu) = E(u|comp_stu)$$

 β_1 causal impact of STR, and β_2 could still be biased

Test Scores and Class Size

	Dependent variable:testscr	
	(1)	(2)
str	-2.280***	-1.593***
	(0.480)	(0.493)
comp_stu		65.160***
		(14.351)
Observations	420	420
R2	0.051	0.096
Adjusted R2	0.049	0.092

Goodness of Fit: The R^2

Total Sum of Squares: $TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$

Explained Sum of Squares: $ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$

Residual Sum of Squares: $RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \hat{u}_i^2$

$$TSS = ESS + RSS$$

A measure of goodness of fit:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

Adjusted R^2

 R^2 never decreases when an explanatory variable is added

An alternative measure called Adjusted R^2

$$AdjustedR^{2} = 1 - \frac{RSS/(n-k-1)}{TSS/(n-1)}$$

where k is the number of variables.

AdjustedR² only rises if RSS declines by a larger percentage than the degrees of freedom.