
Simple Linear Regression Model
ECON 340: Economic Research Methods Instructor: Div Bhagia

We are interested in the relationship between two variables, X and Y . Here, Y is the
dependent variable, while X is the independent or explanatory variable.

1 Ordinary Least Squares (OLS)

We observeYi and Xi for all individuals in our sample. We want to fit a line to represent
our data as follows:

Ŷi = β̂0 + β̂1Xi

where Ŷi is the predicted value of the dependent variable. β̂0 is the intercept for this
line, while β̂1 is its slope. β̂0 and β̂1 are also called regression coefficients. The OLS
estimator chooses the regression coefficients to minimize the discrepancy between Ŷi

and Yi. Define residuals as
ûi = Yi − Ŷi

Then the OLS estimates β̂0 and β̂1 are obtained by minimizing the sum of squared
residuals:

(β̂0, β̂1) =arg min
b0,b1

n!
i=1

û2
i = arg min

b0,b1

n!
i=1

(Yi − b0 − b1Xi)2

Some calculus (included at the end of this handout) will reveal

β̂0 = Ȳ − β̂1 X̄

β̂1 =

"n
i=1(Yi − Ȳ )(Xi − X̄)"n

i=1(Xi − X̄)2
=

SXY

S2
X

Note that from the expression of β̂0, the best fit line passes through the point of means.
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2 Goodness of Fit: The R2

Once we have estimated a regression line, we might be interested in how well this line
fits the data. The R-squared measures how well the OLS regression line fits the data.
R-squared is the percent of sample variation in Y that is explained by X . Note that,

Yi = Ŷi + ûi

In this notation, R2 is the ratio of sample variation of Ŷi to sample variation ofYi. Before
we write down the formula for R2, let’s introduce a few more terms.

Total Sum of Squares:

TSS =
n!

i=1
(Yi − Ȳ )2

Explained Sum of Squares:

ESS =
n!

i=1
(Ŷi − Ȳ )2

Residual Sum of Squares:

RSS =
n!

i=1
(Yi − Ŷi)2 =

n!
i=1

û2
i

I am not going to prove it, but TSS = ESS + RSS. RSS is also sometimes called the Sum
of squared residuals (SSR).

A measure of goodness of fit:

R2 =
ESS
TSS

= 1 − RSS
TSS

R2 lies between 0 and 1

• If X explains no variation in Y , β̂1 = 0 and Ŷi = β̂0 = Ȳ . In which case, ESS = 0
and hence R2 = 0.

• On the other hand, if X explains all the variation in Y , Ŷi = Yi and RSS = 0. In
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which case, R2 = 1.

3 Linear Regression Model: Assumptions for Causal Inference

Until now we have talked about choosing a line that fits the sample data without any
reference to the underlying population. We will now formally set up the linear regres-
sion model and discuss the assumptions under which OLS estimates can be used to
answer causal questions.

• Assumption 1 (Linear in Parameters): The population regression model is linear in
its parameters and correctly specified as:

Y = β0 + β1X + u

Here, u is the mean zero error term E(u) = 0. Note that the model can be non-
linear in variables. For example, Y = β0 + β1X2 + u or lnY = β0 + β1 ln X + u are
fine.

• Assumption 2 (Random Sample): The observed data (Yi, Xi) for i = 1,2, ..., n repre-
sent a random sample of size n from the above population model.

• Assumption 3 (No large outliers): Fourthmoments (or Kurtosis) of X andY are finite.

• Assumption 4 (Zero Conditional Mean/Exogeneity): The expected value of the error
term is 0 conditional on any value of the explanatory variable.

E(u|X) = 0

Assumptions 1-4 imply that OLS estimators are unbiased, that is

E(β̂0) = β0, E(β̂1) = β1

Note that Assumption 4 is the key assumption that is needed for causal analysis and
the one most often not satisfied in practice. By Assumption 4,

E(Y |X) = β0 + β1X
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Say X = x and it increases by 1 unit. Note that,

E(Y |X = x) = β0 + β1x

E(Y |X = x + 1) = β0 + β1(x + 1)

Then β1 represents the causal effect of one unit change in X on Y

β1 = E(Y |X = x + 1) − E(Y |X = x)

Note that the error term u captures unobserved factors that may affect the outcomeY .
The exogeneity assumption posits that, on average, these unobserved factors do not
vary with the values of X . In other words, omitted factors are uncorrelated with X .

4 Sampling Distribution of OLS Estimators

Since OLS estimators are computed from a random sample, just like the sample mean,
they are random variables. In small samples, the sampling distribution for OLS estima-
tors is a bit complicated, but in large samples, they are approximately normal because
of the Central Limit Theorem (CLT).1

Under assumptions 1-4, in large samples,

β̂0 ∼ N(β0,σ2
β̂0
), β̂1 ∼ N(β1,σ2

β̂1
)

where
σ2
β̂1
=

1
n

Var[(Xi − µX)ui]
Var(Xi)

1In small samples, if we are willing to assume that errors are conditionally normally distributed, we
can conclude that OLS estimators are normally distributed.
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5 Hypothesis Testing and Confidence Intervals

As before, we don’t have σ2
β̂1
but we can estimate its sample counterpart Sβ̂1 . Then we

can compute the t-statistic:

t =
β̂1 − β1

Sβ̂1

Since β̂1 is approximately normally distributed in large samples, the t-statistic is ap-
proximately distributed as a standard normal random variable.

One common hypothesis test we are interested in involves testing whether the effect
is 0. This is so common that most statistical packages automatically report the t and p

values associated with this hypothesis test.

H0 : β1 = 0 H1 : β1 ! 0

In this case the test statistic is
t =
β̂1
Sβ̂1

As before, denote zα/2 as the value of z that leaves area α/2 in the upper tail of the nor-
mal distribution. If |t | > zα/2, we can reject the null at α% level of significance and say
that β is statistically significant at α% level of significance. Alternatively, if our p-value
associated with this test is smaller than α, we can say that β is statistically significant
at α% level of significance.

Similarly, we can construct a 1 − α% confidence interval (CI) around the β. A 1 − α CI
in this case is given by:

β̂1 ± zα/2 · Sβ̂1

where zα/2 leaves area α/2 in the upper tail of the normal distribution.
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Appendix: Derivation of OLS Coefficients2

Note that,
n!

i=1
e2

i =

n!
i=1

(Yi − Ŷi)2 =
n!

i=1
(Yi − β̂0 − β̂1Xi)2

First-order conditions for β̂0 and β̂1:

−2
n!

i=1
(Yi − β̂0 − β̂1Xi) = 0 (1)

−2
n!

i=1
(Yi − β̂0 − β̂1Xi)Xi = 0 (2)

Dividing both sides of equation (1) by −2n, we get

Ȳ = β̂0 + β̂1 X̄

This implies that the best fit line will pass through the point of means. We can rewrite
the above equation to get

β̂0 = Ȳ − β̂1 X̄

Now if we both sides of equation (2) by −2 and plug in β̂0 = Ȳ − β̂1 X̄ , we get

n!
i=1

(Yi − Ȳ + β̂1 X̄ − β̂1Xi)Xi = 0

⇒
n!

i=1
[(Yi − Ȳ ) − β̂1(Xi − X̄)]Xi = 0

⇒
n!

i=1
(Yi − Ȳ )Xi = β̂1

n!
i=1

(Xi − X̄)Xi

⇒ β̂1 =
"n

i=1(Yi − Ȳ )Xi"n
i=1(Xi − X̄)Xi

=

"n
i=1(Yi − Ȳ )(Xi − X̄)"n

i=1(Xi − X̄)2
=

SXY

S2
X

2You do not need to know the derivation for the purpose of the exam. However, you do need to
know how β̂0 and β̂1 are chosen.
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