
ECON 441
Introduction to Mathematical Economics

Div Bhagia

Final Exam Review



Numbers, Sets, and Functions

‚ Types of numbers: integers, fractions, rational numbers,
irrational numbers, real numbers.

‚ Set notation:
Example: A “ ta,b, c ,du or A “ tx |x P !u

‚ Set relations: equivalence, subset, disjoint

‚ Set operations: union, intersection, complement
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Numbers, Sets, and Functions

‚ Cartesian product
Example: !2 “ tpx ,yq|x P !,y P !u

‚ Relation: subset of a Cartesian product

‚ Function: a relation where for each x there is a unique y

f : X Ñ Y , y “ f pxq

X : domain, Y : codomain, f pX q : range
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Numbers, Sets, and Functions

‚ One-to-one function: each value of y is also associated
with a unique value of x

‚ One-to-one mapping unique to strictly monotonic
functions

‚ Inverse of a function only exists for strictly monotonic
functions

x “ f ´1pyq

returns the value corresponding value of x for each y .
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Summation Notation
Example 1:

3
ÿ

i“1

ÿ

jďi

XiYj
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Summation Notation
Example 2:

2
ÿ

i“1

2
ÿ

j“1

pXiYj ` 4Y 2
j ` 1q
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Linear Algebra
‚ Matrix operations: addition, subtraction, scalar
multiplication, matrix multiplication

‚ Identity matrix, transpose of a matrix

‚ Inverse of a matrix: AA´1 “ A´1A “ I

‚ Solution of a linear-equation system Ax “ b

A´1Ax “ A´1b Ñ x “ A´1b

‚ Finding the determinant |A| and inverse of a matrix

A´1 “
1

|A|
AdjA
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Linear Algebra

‚ If a matrix’s inverse exists, it’s called a nonsingular matrix

‚ Necessary and sufficient conditions for nonsingularity:
‚ Necessary: square matrix
‚ Sufficient: rows (or equivalently columns) are linearly independent

‚ Rank of matrix: maximum number of linearly independent
rows (square matrix with full rank = nonsingular)

‚ For singular matrices the determinant |A| “ 0
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Linear Algebra
Say we have the following system of equations:

3x ` 2y “ 20
6x ` 4y “ 40

Can write this as:
Av “ b

where
A “

„

3 2
6 4

ȷ

v “

„

x
y

ȷ

b “

„

20
40

ȷ

Unique solution for this system does not exist as A is singular.
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Linear Algebra
Let’s solve the following system of equations

3x ` 2y “ 20
6x ´ 3y “ 40
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Calculus
‚ Limit definition of differentiability and continuity

‚ Rules of differentiation to differentiate functions (including
log and exponential functions)

‚ Partial and total derivatives

‚ Second-order derivatives

‚ Elasticities and partial elasticities
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Calculus
For the function:

y “ f px1,x2, ...,xnq

Note that the gradient and Hessian is given by

!f “

»

—

—

–

f1
f2
...
fn

fi

ffi

ffi

fl

H “

»

—

—

–

f11 f12 . . . f1n
f21 f22 . . . f2n
... ... ...
fn1 fn2 . . . fnn

fi

ffi

ffi

fl
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Calculus
Calculate the total differential of the production function

Q “ F pK ,Lq

to find how a small change in both labor and capital affects the
production.
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Calculus
Consider a company that allocates its marketing budget X paq
based on the economic climate, represented by an economic
index a.

X paq “ 10a

The company’s sales revenue Y depends on both the marketing
spend X paq and the economic index a.

Y pX paq,aq “ X paq ¨ logp1 ` aq

How does this company’s revenue vary with respect to the
economic index a? 13 / 26



Single-Variable Optimization

‚ Given a function
y “ f pxq

‚ Critical point f 1 px˚q “ 0, necessary condition for an
optimum

‚ Sufficient condition:
‚ maximum if f 2px˚q ă 0
‚ minimum if f 2px˚q ą 0
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Single-Variable Optimization
Let’s find the extrema for the following function and plot it:

f pxq “ x4 ´ 2x2
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Single-Variable Optimization
Say, f pxq is a strictly concave function and

f 1px˚q “ 0

Is f px˚q the global maximum? Can you explain why?
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Multiple-Variable Optimization

y “ f px1,x2, ...,xnq

First-order condition:
!f px1,x2, ...,xnq “ 0

That is:
f1px1,x2, ...,xnq “ 0
f2px1,x2, ...,xnq “ 0

...
fnpx1,x2, ...,xnq “ 0
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Multiple-Variable Optimization
πpK ,Lq “ AK 1{3L2{3 ´wL´ rK

Show that at the optimal: wL “ 2rK
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Envelope Theorem
Value function:

V “ f px˚pαq,y ˚pαq,αq

If we differentiate V with respect to α:
dV

dα
“ f ˚

x ¨
dx˚

dα
` f ˚

y ¨
dy ˚

dα
` f ˚
α

From the first order conditions we know f ˚
x “ f ˚

y “ 0, therefore

dV

dα
“ f ˚

α
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Envelope Theorem

V “ πpK ˚,L˚q

How does optimal profit change due to a change in w or r?
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Constrained Optimization
U “ Upc1, c2q “ ln c1 ` β ln c2 0 ă β ă 1

‚ y1,y2 ą 0: income in period 1 and 2

‚ Income you save s in period 1 earns interest r ą 0

‚ In which case,
c1 ` s “ y1 c2 “ y2 ` p1 ` rqs

‚ Combining these constraints:

c1 `
1

1 ` r
c2 “ y1 `

1
1 ` r

y2
looooomooooon

m”present-discounted income 21 / 26



Constrained Optimization
max

tc1,c2u
Upc1, c2q “ ln c1 ` β ln c2 s.t. c1 `

1
1 ` r

c2 “ m
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Envelope Theorem with Constraints
Value function:

V “ f px˚pαq,y ˚pαq,αq

By envelope theorem:
dV

dα
“

BL˚

Bα

How does the optimal utility change due to changes in r , y1, y2,
or β?
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Interpretation of the Lagrange Multiplier
Lagrangian function:

L “ f px ,yq `λrc ´ gpx ,yqs

Substituting the solutions into the objective function, we get

V “ f px˚pcq,y ˚pcqq

By the envelope theorem,

dV

dc
“

BL˚

Bc
“ λ˚
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Global Optimizers with Constraints
Consider the problem:

Maximize f px1,x2, ...,xnq subject to gpx1,x2, ...,xnq “ k .

The stationary point px˚
1 ,x˚

2 , ...,x˚
n q of the lagrangian is a global

maximum if:
1. f px1,x2, ...,xnq is quasiconcave
2. The constraint set is convex
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A Few Last Words
Please fill the SOQs :)

Thanks for a great semester.

Good luck and don’t be a stranger!
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