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Profit Maximization
Maximize:

πpLq “ ALα´wL, 0 ă αă 1

First-order condition:

π1pLq “ αALα´1 ´w “ 0 Ñ L˚ “

ˆ

αA

w

˙
1

1´α

Optimal labor input is a function of wages, we can write L˚pwq.

Also, we wrote πpq as a function of L, but it also depends on w
(and α) which are exogenous parameters.
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Profit Maximization
We are often interested in questions like:

How does the profit change due to change in wages?

Remember,
πpLq “ ALα´wL

So optimal profit depends directly on w but also indirectly
through L
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Maximum Value Function
Maximum value function: objective function after plugging in
optimal values for the choice variables

Maximum value function is a function of parameters

For the profit maximization problem, the value function:
V pwq “ πpL˚pwq,wq “ AL˚pwqα´wL˚pwq

Plugging in L˚pwq “
`

Aα
w

˘

1
1´α , we get:

V pwq “ A

ˆ

αA

w

˙
α

1´α

´w

ˆ

αA

w

˙
1

1´α
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Profit Maximization
Value function:

V pwq “ π˚ “ πpL˚pwq,wq

To see how optimal profit V pwq changes with wages:

V 1pwq “ π˚
L ¨

dL˚

dw
loomoon

Indirect Effect

` π˚
w

loomoon

Direct Effect
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Profit Maximization
Value function:

V pwq “ π˚ “ πpL˚pwq,wq

To see how optimal profit V pwq changes with wages:

V 1pwq “ π˚
L ¨

dL˚

dw
loomoon

Indirect Effect

` π˚
w

loomoon

Direct Effect

But by the F.O.C, π˚
L “ 0, so

V 1pwq “ π˚
w
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Envelope Theorem

V 1pwq “ π˚
w

This result says that at the optimum, as wages vary, with labor
allowed to adjust optimally gives the same result as if labor was
held fixed.

In other words, only the direct effect of wages matters, even
though it enters indirectly through choice of labor input as well.

This is actually a general result called the envelope theorem.
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Profit Maximization
How does the profit change due to a change in wages?

π˚ “ AL˚pwqα´wL˚pwq

The answer is given by:

π˚
w “ ´L˚pwq “ ´

ˆ

αA

w

˙
1

1´α

Note that you would get the same answer by calculating V 1pwq
using the expression on slide 3, but the envelope theorem
suggests the above shortcut.
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Envelope Theorem
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Envelope Theorem
More generally, consider the following maximization problem
with two choice variables x and y , and one parameter, α:

Maximize
U “ f px ,y ,αq

The first order necessary conditions are

fxpx ,y ,αq “ fypx ,y ,αq “ 0

If the second-order conditions are met, these two equations
implicitly define the solutions x “ x˚pαq y “ x˚pαq.
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Envelope Theorem
If we substitute these solutions into the objective function, we
obtain a new function:

V pαq “ f px˚pαq,y ˚pαq,αq

If we differentiate V with respect to α:
dV

dα
“ fx

Bx˚

Bα
` fy

By ˚

Bα
` fα

From the first order conditions we know fx “ fy “ 0, therefore
dV

dα
“ fα
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Envelope Theorem with Constraints
We have a similar envelope theorem for constrained
optimization problems such as

Maximize U “ f px ,y ;αq subject to G px ,y ;αq “ 0

Lagrangian function:

L “ f px ,y ;αq `λG px ,y ;αq
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Envelope Theorem with Constraints
Lagrangian function:

L “ f px ,y ;αq `λG px ,y ;αq

First-order conditions:
Lx “ fx `λGx “ 0
Ly “ fy `λGy “ 0
Lλ “ G px ,y ;αq “ 0

Solving this system of equations gives us

x “ x˚pαq y “ y ˚pαq λ“ λ˚pαq
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Envelope Theorem with Constraints
Substituting the solutions into the objective function, we get

U˚ “ f px˚pαq,y ˚pαq,αq “ V pαq

By envelope theorem:

dV pαq

dα
“

BL˚

Bα
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Interpretation of the Lagrange Multiplier
An application of the envelope theorem for constrained
optimization gives us the interpretation of the Lagrange
multiplier.

Consider the following problem:

Maximize U “ f px ,yq subject to gpx ,yq “ c

Can think of the constraint as:
G px ,y , cq “ c ´ gpx ,yq

So c is just a parameter. 13 / 33



Interpretation of the Lagrange Multiplier
Lagrangian function:

L “ f px ,yq `λrc ´ gpx ,yqs

Substituting the solutions into the objective function, we get

U˚ “ V pcq “ f px˚pcq,y ˚pcqq

By the envelope theorem,

dV pcq

dc
“

BL˚

Bc
“ λ˚
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The Quiz Question
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Should you get married?
‚ Two agents a and b with incomes ya and yb, respectively

‚ Let qa and qb denote consumption of agent a and b,
respectively

‚ Q denotes consumption of public good

‚ If single, agent s maximizes
UspQ,qsq subject to Q ` qs “ ys

‚ Budget constraint when married:
Q ` qa ` qb “ ya ` yb
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Concave and Convex Functions
‚ Concave function: f 2pxq ď 0 for all x

‚ Convex function: f 2pxq ě 0 for all x

‚ Strictly concave function: f 2pxq ă 0 for all x

‚ Strictly convex function: f 2pxq ą 0 for all x
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Global Optimizers
If a function is concave, any critical point will give us an
absolute maximum.

If a function is strictly concave, any critical point will give us a
unique absolute maximum.

If a function is convex, any critical point will give us an absolute
minimum.

If a function is strictly convex, any critical point will give us a
unique absolute minimum.
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Concave and Convex Functions
f is concave if:

f pλx1 ` p1 ´λqx2q ě λf px1q ` p1 ´λqf px2q

f is convex if:

f pλx1 ` p1 ´λqx2q ď λf px1q ` p1 ´λqf px2q

where λ P p0,1q.

For strict concavity/convexity replace with strict inequalities.
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Concave Function

x1 x2λx1 ` p1 ´λqx2

f px2q

f px1q

f pλx1 ` p1 ´λqx2q
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Concave Function

x1 x2λx1 ` p1 ´λqx2

f px2q

f px1q

λf px1q ` p1 ´λqf px2q

f pλx1 ` p1 ´λqx2q
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Convex Function

x1 x2λx1 ` p1 ´λqx2

f px2q

f px1q

f pλx1 ` p1 ´λqx2q
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Convex Function

x1 x2λx1 ` p1 ´λqx2

f px2q

f px1q

λf px1q ` p1 ´λqf px2)

f pλx1 ` p1 ´λqx2q
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Concavity and Convexity
Can extend the concept of concavity and convexity to
multi-variable functions.

A function is concave iff, for any distinct points u and v and any
0 ă λă 1,

λf puq ` p1 ´λqf pvq ď f pλu ` p1 ´λqvq

Similarly, a function is convex iff
λf puq ` p1 ´λqf pvq ě f pλu ` p1 ´λqvq

Substituting strict inequalities in the above, we get the
definitions of strict concavity and convexity.

24 / 33



Convex sets
Convex set different from convex function.

A set A is convex if for any x ,y P A, p1 ´λqx `λy also belongs to
A where λ P r0,1s.
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Quasiconcavity and Quasiconvexity
A function is quasiconcave if and only if for any pair of distinct
points u and v in the convex domain of f , and for 0 ă λă 1, we
have

f pλu ` p1 ´λqvq ě mintf puq, f pvqu

Note that when f pvq ě f puq, the above inequality becomes

f pλu ` p1 ´λqvq ě f puq

Replace inequality with strict inequality to get the definition of
strict quasiconcavity.
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Quasiconcavity and Quasiconvexity
A function is quasiconvex if and only if for any pair of distinct
points u and v in the convex domain of f , and for 0 ă λă 1, we
have

f pλu ` p1 ´λqvq ď maxtf puq, f pvqu

Note that when f pvq ě f puq, the above inequality becomes

f pλu ` p1 ´λqvq ď f pvq

Replace inequality with strict inequality to get the definition of
strict quasiconvexity.
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Quasiconcavity and Quasiconvexity

‚ If f pxq is (strictly) quasiconcave, then ´f pxq is (strictly)
quasiconvex.

‚ Any (strictly) concave (convex) function is (strictly)
quasiconcave (quasiconvex), but the converse may not be
true.

‚ If f pxq is linear, then it is quasiconcave as well as
quasiconvex.
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Alternative Definitions
A function f pxq, where x is a vector of variables is quasiconcave
iff for any constant k , the upper-contour set

SU “ tx |f pxq ě ku

is a convex set.

A function f pxq, where x is a vector of variables is quasiconvex
iff for any constant k , the lower-contour set

SL “ tx |f pxq ď ku

is a convex set.
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Global Optimizers with Constraints
Consider the problem:

Maximize f px1,x2, ...,xnq subject to gpx1,x2, ...,xnq “ k .

The stationary point px˚
1 ,x˚

2 , ...,x˚
n q of the lagrangian is a global

maximum if:
1. f px1,x2, ...,xnq is quasiconcave
2. The constraint set is convex
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Homogeneous Functions
A function is said to be homogeneous of degree k if

f pax1,ax2, . . . ,axnq “ ak f px1,x2, . . .xnq

Example: f px1,x2q “ x1 ` x2 is homogenous of degree 1.

Find the degree of homogeneity for f px ,yq “ x2 ` xy .

What about f px ,yq “ x2 ` y?
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Example

f pK ,Lq “ AKαLβ
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Homework and References
‚ Sections: 13.5, 11.5, 12.4, 12.6

‚ Homework
‚ Exercise 11.5: 1 (a), 2(c), 4, 5
‚ Exercise 12.4: 1, 2, 4
‚ Exercise 12.6: 1, 2, 6, 7
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