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First-Derivative Test

f'(x)=0

Va2
@*o
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Necessary vs Sufficient Conds.

Condition Maximum Minimum
First-order necessary f'(x)=0 f'(x) =0

Second-order necessary T f”(x) <0 f"(x) =0
Second-order sufficient T f”(x) <0 f(x) >0

T Applicable only after the first-order necessary condition has
been satisfied.
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Concave and Convex Functions

e Concave function: ”(x) < 0 for all x

e Convex function: (x) > 0 for all x

e Strictly concave function: ”(x) < 0 for all x

e Strictly convex function: ”(x) > 0 for all x
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Global Optimizers

¢ If a function is concave, any critical point will give us a
global maximum.

e If a function is strictly concave, any critical point will give
us the unique global maximum.

¢ If a function is convex, any critical point will give us a global
minimum.

e If a function is strictly convex, any critical point will give us
the unique global minimum.
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Example

y=3x>+3
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Example

fR" >R f(x)=x>—3x+5
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Example

f(x)=x+—
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More than One Choice Variable

2= F(x,y)

What pair of values for x and y maximize/minimize the above
function?

We will continue restricting ourselves to continuous functions
that have continuous first-derivatives.
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More than One Choice Variable
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First-Order Conditions
For the function

z="f(x,y)
The first order (necessary) condition:

fo=f =0

y
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Partial Derivative

of
i — b
Line has slope D (a,b)

Graph of f(x,b)
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Example

What are the critical points for

f(x,y) = —(+y°)
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Example
What are the critical points for

(LK) =f(K,L)—rK —wL
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Second-Order Partial Derivatives

For the function
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Second-Order Partial Derivatives

Also, have cross (or mixed) second-order partial derivatives.

We e.llways have f,, = f,, as long as
continuous.

X\h

, and £, are both
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Example
Find the four second-order partial derivatives of:

z=x3+5xy—y2
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da i=1
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aﬁ i=1
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Second-Order Condition

Second-order (sufficient) conditions:

For maximum: f, <0,f, <0, f f, > (fxy)2.

For minimum: £, > 0,f,, >0, ., f,, > (f, )2.
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Hessian Matrix

For the function:
y = F(X1, X0, 00y Xp)

The gradient vector V and Hessian matrix H is given by

f fu fio ... fip
f fon oy oee £
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More than Two Choice Variables

Condition Maximum Minimum
First-order i=fHh=...f,=0 i=fHh=...f,=0
necessary i.e. Vi =0 i.e. Vi=0
Second-order |H,;| <0,|H,| >0, \Hi|, | Ho|, .- -5 |H, >0
sufficient |H;| <0,...

T Applicable only after the first-order necessary condition has

been satisfied. 25/ 26



References and Homework

e New sections today: Sections 11.1, 11.2
e Homework Problems: Exercise 11.2 1-5

e Reminder: Quiz 4 next week
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