
ECON 441
Introduction to Mathematical Economics

Div Bhagia

Midterm Review



Numbers, Sets, and
Functions
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Sets
‚ R is the set of real numbers (rational and irrational)

‚ x P R to denote x belongs to the set of real numbers

‚ Consider the universe of all real numbers, set A is given by:

A “ tx |x ą 0u

‚ What is the complement of A?

Ac “ tx |x ď 0u
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Set Relations and Operations
Consider the following sets:

A “ tx |x ą 0u

B “ tx |x is a positive integeru
C “ tx |1 ă x ă 5u

‚ Is A “ B? Is B Ă A?
‚ Are C and B disjoint sets?
‚ What is AXB? What about AYB?
‚ What is B XC?
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Subsets
‚ H: empty or null set

‚ What are all possible subsets of

S “ ta,b, cu

H, tau, tbu, tcu, ta,bu, tb, cu, ta, cu, ta,b, cu

Always 2n subsets. Here n “ 3, so 8 subsets.
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Set Operations: Venn Diagrams

A B A B

A B
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Cartesian Product

A “ t1,2u B “ t3,4u

Cartesian Product: set of all possible ordered pairs

AˆB “ tp1,3q, p1,4q, p2,3q, p2,4qu

6 / 65



Cartesian Plane
R2 “ tpx ,yq|x P R,y P Ru

´4 ´3 ´2 ´1 1 2 3 4

´4
´3
´2
´1

1
2
3
4

Can have R3,R4, ...,Rn 7 / 65



Relations
Relation: subset of the Cartesian product

Example. tpx ,yq|y ď xu

´4 ´3 ´2 ´1 1 2 3 4

´4
´3
´2
´1

1
2
3
4

x

y
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Functions
Function: a relation where for each x there is a unique y

f : X Ñ Y , y “ f pxq

Examples. y “ x ,y “ x2,y “ 2x ` 3

X : domain, Y : codomain, f pX q : range

Most functions we will encounter, f : Rk Ñ R
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Inverse of a function
Function y “ f pxq has an inverse if it is a one-to-one mapping,
i.e. each value of y is associated with a unique value of x .

Inverse function
x “ f ´1

pyq

returns the value corresponding value of x for each y .

One-to-one mapping unique to strictly monotonic functions
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y “ exppxq

´2 ´1 0 1 2

0

2

4

6

8
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Logarithmic Function
Since the exponential function is a monotonic function, its
inverse exists.

The inverse of the exponential function is called the log or
logarithmic function.

For the natural exponential function:

y “ et Ñ loge y “ lnpyq
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y “ lnpxq

0 2 4 6 8

´2

´1

0

1

2
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Rules for Logarithmic Functions

lnpuvq “ lnu ` lnv

lnpu{vq “ lnu ´ lnv

lnua “ a lnu
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Linear Algebra
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Matrices

A “

»

—

—

–

a11 a12 . . . a1n
a21 a22 . . . a2n... ... ... ...
am1 am2 . . . amn

fi

ffi

ffi

fl

mˆn

Can write it more compactly

A “ raijs i “ 1,2, ...,m; j “ 1,2, ...,n

Square matrices: m “ n
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Matrices
Two matrices are equal if all their elements are identical.

Example.
A “

„

1 8
4 ´1

ȷ

‰

„

1 8
4 2

ȷ

So A “ B if and only if aij “ bij for all i , j

17 / 65



Matrix Addition and Subtraction
‚ How to add or take the difference between two matrices?

Ñ Element-by-element

Ñ Matrices have to have same dimension

Example.
A “

„

2 3
4 ´6

ȷ

B “

„

1 8
´2 3

ȷ

‚ What is A`B and A´B?
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Scalar Multiplication
How to multiply a scalar to a matrix?

λ

„

a11 a12 a13
a21 a22 a23

ȷ

“

„

λa11 λa12 λa13
λa21 λa22 λa23

ȷ

Example.
A “

„

2 3
4 ´6

ȷ

B “

„

1 8
´2 3

ȷ

What is 2B and A´ 2B?
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Matrix Multiplication
Only possible to multiply two matrices, Amˆn and Bpˆq to get
AB if n “ p i.e.

number of columns in A “ number of rows in B

Example. A “

„

2 3
4 ´6

ȷ

2ˆ2
B “

„

1 8 1
´2 3 1

ȷ

2ˆ3

Can do AB , but cannot do BA. Dimension of AB is 2 ˆ 3.
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Matrix Multiplication
So how to actually multiply these matrices?

C “ AB

cij “ ai1b1j ` ai2b2j ` ... ` ainbnj “

n
ÿ

k“1

aikbkj

Element cij obtained by multiplying term-by-term the entries of
the ith row of A and jth column of B .
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Matrix Multiplication

A “

„

2 3
4 ´6

ȷ

2ˆ2
B “

„

1 8 1
´2 3 1

ȷ

2ˆ3
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Vectors
‚ Matrices with only one column: column vectors

x “

»

—

—

–

x1
x2...
xn

fi

ffi

ffi

fl

‚ Matrices with only one row: row vectors

x 1 “
“

x1 x2 . . . xn
‰
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Linear Dependence
A set of vectors is said to be linearly dependent if and only if any
one of them can be expressed as a linear combination of the
remaining vectors.

Example.
v1 “

„

1
2

ȷ

v2 “

„

2
4

ȷ
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Identity Matrices
Square matrix with 1s in its principal diagonal and 0s elsewhere

A 2 ˆ 2 identity matrix:

I2 “

„

1 0
0 1

ȷ

A 3 ˆ 3 identity matrix:

I3 “

»

–

1 0 0
0 1 0
0 0 1

fi

fl
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Identity Matrices
Acts like 1,

AI “ IA “ A

Example.
A “

„

2 3 1
4 ´6 2

ȷ
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Transpose of a Matrix
Transpose of A: interchange rows and columns (A1)

A “

„

2 3 1
4 ´6 2

ȷ
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Inverse of a Matrix
For a square matrix A, it’s inverse A´1 is defined as:

AA´1 “ A´1A “ I

Squareness is a necessary condition not a sufficient condition

If a matrix’s inverse exists, it’s called a nonsingular matrix
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Conditions for Nonsingularity
Squareness is necessary but not sufficient

Sufficient condition for nonsingularity:

Rows or columns are linearly independent

Example.
A “

„

1 2
2 4

ȷ

B “

„

1 2
3 4

ȷ

A is singular, B is nonsingular.
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Rank of a Matrix
Rank of a matrix “ maximum number of linearly independent
rows

A “

„

1 2
2 4

ȷ

B “

„

1 2
3 4

ȷ

Rank of A? Rank of B?

Full rank = all rows linearly independent =nonsingular matrix
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Determinant
Determinant |A| is a unique scalar associated with a square
matrix A.

|A| “ 0 for a singular matrix.

Determinant of a 2 ˆ 2 Matrix:

A “

„

a11 a12
a21 a22

ȷ

Can be calculated as:
|A| “ a11a22 ´ a12a21
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Determinant of a n ˆ n Matrix
A minor of the element aij , denoted by |Mij | is obtained by
deleting the ith row and jth column.

Cofactor Cij is defined as:

|Cij | “ p´1qi`j |Mij |

Then,

|A| “

n
ÿ

i“1

aij |Cij | “

n
ÿ

j“1

aij |Cij |
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Find the Determinant

A “

»

–

1 5 1
0 3 9

´1 0 0

fi

fl
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Matrix Inversion
Adjoint of a nonsingular n ˆ n matrix

adjA “ C 1 “

»

—

—

–

|C11| |C21| . . . |Cn1|

|C12| |C22| . . . |Cn2|
... ... . . . ...
|C1n| |C2n| . . . |Cnn|

fi

ffi

ffi

fl

A´1 “
1

|A|
AdjA
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Find the Inverse

A “

„

3 2
1 0

ȷ
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A Simple Economic Model
Two equations in two unknowns:

q ` 2p “ 100
q ´ 3p “ 20

Can write this as:
Ax “ b

where
A “

„

1 2
1 ´3

ȷ

x “

„

q
p

ȷ

b “

„

100
20

ȷ
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Solution of Linear-Equation System

Ax “ b

Pre-multiply both sides by A´1,

A´1Ax “ A´1b ùñ x “ A´1b

What happens if A is singular? Infinite solutions.
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Calculus
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Differentiability and Continuity
f 1px0q exists if the following limit exists:

f 1px0q “ lim
xÑx0

f pxq ´ f px0q

x ´ x0

A function y “ f pxq is continuous at x0 if

lim
xÑx0

f pxq “ f px0q

Continuity is a necessary condition for differentiability, but it is
not sufficient.
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So how to differentiate functions?
Rules of differentiation, easier than taking the limit each time

Constant function rule:
For function f pxq “ k , f 1pxq “ 0.

Power function rule:
For function f pxq “ xn, f 1pxq “ nxn´1.

Generalized power function rule:
For function f pxq “ cxn, f 1pxq “ cnxn´1.
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Derivatives of Exponential and Logarithmic
Functions
Derivative of the exponential function:

y “ ex Ñ
dy

dx
“ ex

Derivative of the log function:

y “ lnx Ñ
dy

dx
“

1
x
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Rules of Differentiation
Two or more functions of one variable

Sum-Difference Rule

d

dx
rf pxq ˘ gpxqs “ f 1

pxq ˘ g 1
pxq

Product Rule

d

dx
rf pxqgpxqs “ f pxqg 1pxq ` f 1pxqgpxq
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Rules of Differentiation
Two or more functions of one variable

Quotient Rule

d

dx

f pxq

gpxq
“

f 1pxqgpxq ´ f pxqg 1pxq

gpxq2

Inverse Function Rule
dx

dy
“

1
dy{dx

43 / 65



Rules of Differentiation
Functions of Different Variables

Chain Rule
For z “ f pyq, y “ gpxq

dz

dx
“

dz

dy
¨
dy

dx
“ f 1pyqg 1pxq
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Example
Total cost: C “ C pQq

Marginal cost: MC “ C 1pQq

Average cost:
AC “

C pQq

Q

When is dAC
dQ positive?
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Example
Revenue: R “ f pQq, f 1pQq ą 0

Output: Q “ gpLq, g 1pLq ą 0

Change in revenue due to labor adjustment:

dR

dL
“

dR

dQ
¨
dQ

dL
“ f 1

pQqg 1
pLq
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Elasticity
Elasticity is defined as:

ϵ “
Percentage change in y
Percentage change in x “

dy{y

dx{x

We can calculate this as:

ϵ “
dy

dx
¨
x

y
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Elasticity
Elasticity:

ϵ “
dy

dx
¨
x

y

‚ |ϵ| ą 1, elastic
‚ |ϵ| “ 1, unit elasticity
‚ |ϵ| ă 1, inelastic
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Example

C “ a ` bY
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Partial Differentiation
For a function of several variables:

y “ f px1,x2, ¨ ¨ ¨ ,xnq

If x1 changes by ∆x1 but all other variables remain constant:
∆y

∆x1
“

f px1 `∆x1,x2, ¨ ¨ ¨ ,xnq ´ f px1,x2, ¨ ¨ ¨ ,xnq

∆x1

Partial derivative of y with respect to xi :
By

Bxi
“ fi “ lim

∆xiÑ0

∆y

∆xi
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Production Function

Q “ AKαL1´α

Marginal product of capital (MPK):
BQ

BK
“ QK “

Marginal product of labor (MPL):
BQ

BL
“ QL “
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Total Derivative
For a function of n variables

y “ f px1,x2, ¨ ¨ ¨ ,xnq

df

dt
“ f1 ¨

dx1

dt
` f2 ¨

dx2

dt
` ¨ ¨ ¨ ` fn ¨

dxn
dt
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Total Derivative
Given the function

y “ f px1,x2q

We are interested in how y changes with respect to x1, but x2
also depends of x1

x2 “ gpx1q

Total derivative with respect to x1:

dy

dx1
“ f1 ` f2 ¨ g 1

px1q

53 / 65



Example
Let a production function be

Qptq “ AptqK ptqαLptq1´α

where
K ptq “ K0 ` at Lptq “ L0 ` bt
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Gradient
For the function:

y “ f px1,x2, ..., xnq

The gradient is given by

∇f “

»

—

—

–

f1
f2...
fn

fi

ffi

ffi

fl

55 / 65



Derivatives of Implicit Functions
Total differentiating F , we have dF “ 0, or

Fydy ` F1dx1 ` ¨ ¨ ¨ ` Fndxn “ 0

Suppose that only y and x1 are allowed to vary:
By

Bx1
“ ´

F1

Fy
.

In the simple case where the given equation is F py ,xq “ 0, the
rule gives

dy

dx
“ ´

Fx
Fy
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Example

Y “ β0 ` β1 lnX ` u

What is the interpretation of β1?
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Integration
‚ Integration is the reverse of differentiation

‚ If f pxq is the derivative of F pxq, we can integrate f pxq to
find F pxq

d

dx
F pxq “ f pxq ñ

ż

f pxqdx “ F pxq ` c

‚ Rules of integration follow from rules of differentiation
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Rules of Integration
Power Rule

ż

xndx “
1

n ` 1
¨ xn`1 ` c pn ‰ ´1q

Examples:
ż

x3dx ,
ż

xdx ,
ż

1dx
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Rules of Integration
Exponential Rule

ż

exdx “ ex ` c

Log Rule
ż

1
x
dx “ lnx ` c px ą 0q

60 / 65



Rules of Integration
Integral of a sum

ż

rf pxq ` gpxqsdx “

ż

f pxqdx `

ż

gpxqdx

Integral of a multiple
ż

kf pxqdx “ k

ż

f pxqdx

Example:
ż

px2 ` 3x ` 1qdx
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Definite Integrals
Definite integral:

ż b

a
f pxqdx “ F pxq

ȷb

a

“ F pbq ´ F paq

Example:
ż 3

1
2x2 “
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Area under the curve

x0 x1 x2 x3 x4 x5
x

f pxq

∆x3

f px3q

Area «
řn

i“1 f pxiq∆xi
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Area under the curve

x

f pxq

Area “ lim
nÑ8

n
ÿ

i“1

f pxiq∆xi

“

ż xn

x1

f pxqdx
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Few last words
‚ Sample exams and help sheet on course website

‚ Additional office hours this week: Thursday, 4-6 pm. Or by
appointment.

‚ Good luck for the exam!
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