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APPENDIX C DATA

C.1 Data Construction and Sample Selection

The Displaced Worker Supplement (DWS) was introduced in 1984, but the variable

on the length of notice was not included in the first two samples. Furthermore, the

definition of displaced workers has undergone changes over time.1 Before 1998, self-

employed individuals or those who expected to be recalled to their lost job within six

months were also included in the survey. However, the information on whether a worker

expected to be recalled is only available for the years 1994 and 1996. In addition, the

data on the length of time individuals took to find their next job is miscoded and largely

missing for the year 1994. For these reasons, my analysis begins from 1996. Moreover,

to maintain consistency across years, I exclude self-employed individuals or those who

expected to be recalled from the 1996 sample.

The duration of unemployment for individuals who have secured a job by the time

of the survey is given by the dwwksun variable, which measures the number of weeks

the person was unemployed between leaving or losing one job and starting another.

For those who report not holding another job since their last job, censored duration is

obtained using the durunemp variable from the CPS. Only individuals with non-missing

†California State University, Fullerton; dbhagia@fullerton.edu
1The recall window was 5 years instead of 3 before 1994.
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TABLE C.1: COMPARISON OF THE ANALYTICAL SAMPLE TO ALL INDIVIDUALS IN THE DIS-
PLACED WORKER SUPPLEMENT (DWS) AND THE CURRENT POPULATION SURVEY (CPS)

Sample DWS CPS
(1) (2) (3)

Age 42.87 40.61 42.17
Female 0.44 0.44 0.52
Black 0.09 0.11 0.10
Married 0.61 0.54 0.60
Educational Attainment

HS Dropout 0.04 0.09 0.09
HS Graduate 0.57 0.65 0.60
College Degree 0.39 0.26 0.30

Employment Status
Employed 0.89 0.67 0.74
Unemployed 0.09 0.21 0.04
NILF 0.02 0.12 0.21

Observations 3556 44707 969604
Note: All samples are restricted to individuals between the ages of 21 to 64 and pertain to years 1996-
2020. Column (1) includes individuals from the DWS who lost their job at least one year before the
survey, worked full-time for at least six months and were provided health insurance at their lost job, did
not expect to be recalled, and received a layoff notice. Columns (2) and (3) include all individuals in the
DWS and the monthly CPS, respectively, over the sample period.

information on their unemployment duration are included in my sample. In addition,

since the sample is restricted to individuals who lost a job at least one year prior to the

survey, any individuals who haven’t found a job but report an unemployment duration

of less than a year are excluded from the sample. Moreover, individuals with missing

information on earnings, industry, or occupation at the previous job are also excluded

from the sample. Finally, to minimize retrospective bias, I exclude individuals who

report switching more than two jobs since losing their previous job.

Since 2012, tenure at the lost job was top-coded at 24 years. To maintain consistency

across samples, I also implement a top code of 24 years for all years prior to 2012.

Earnings are reported in 1999 dollars. Table C.1 presents the descriptive statistics of

my analytical sample compared to all individuals in the DWS as well as the CPS over

the sample period. Relative to the CPS and DWS, individuals in the sample are more

2



FIGURE C.1: ASSESSING OVERLAP OF PROPENSITY SCORE DISTRIBUTIONS

Note: The figure presents the density of estimated propensity scores for individuals with short and long
notice separately.

educated and have higher employment rates.

C.2 Propensity Score Weighting

To ensure individuals with long and short notice are comparable, I reweight the sam-

ple using inverse propensity score weighting. The weight for each individual is calcu-

lated as the inverse of the likelihood of receiving the reported notice length. To estimate

the propensity scores, I utilize a logistic regression where the odds of receiving a longer

notice are modeled as a function of several variables. These variables include age, gen-

der, marital status, race (indicator for Black), college education, being laid off due to

plant closure, membership in a union, residing in a metropolitan area, tenure and earn-

ings at the lost job, occupation at the lost job, state fixed effects, and the interaction

between displacement year and industry of the lost job fixed effects. The density of

estimated propensity scores for short and long-notice individuals is displayed in Figure

C.1. The figure shows that there is a significant overlap between the two distributions,
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FIGURE C.2: LENGTH OF NOTICE OVER TIME

Note: The figure plots a 3-year moving average of the proportion of individuals who received a notice of
more than 2 months amongst all individuals in the sample who were displaced in a given year.

making further trimming of the data unnecessary.

Table 1 in the main text provides evidence that the reweighting achieves balance

across certain observable variables. Figure C.2 demonstrates that reweighting leads to

balance with respect to the year of displacement. In addition, Figure C.3 presents occu-

pation and industry distributions for short and long-notice workers in both the balanced

and unbalanced samples. Notably, the weighted sample exhibits more similarity in the

industrial and occupational composition of short and long-notice workers.

C.3 Additional Descriptives

This section provides additional descriptive statistics. Table C.2 presents the rela-

tionship between longer notice and earnings at the subsequent job. The table indicates

that workers with longer notice tend to have higher earnings in their subsequent jobs.

However, we cannot interpret this as a direct impact of longer notice because extended

periods of unemployment can have a negative impact on wages (?), and as shown in

this paper, a longer notice leads to shorter unemployment spells.
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FIGURE C.3: INDUSTRY AND OCCUPATION OF THE LOST JOB

(A) INDUSTRY, UNBALANCED (B) INDUSTRY, BALANCED

(C) OCCUPATION, UNBALANCED (D) OCCUPATION, BALANCED

Note: The figure presents the proportions of individuals whose displaced jobs were in specific industries
(panels A and B) and occupations (panels C and D) among long-notice and short-notice workers in both
the unbalanced and balanced samples. The error bars represent the 90% confidence intervals.
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TABLE C.2: EARNINGS AT THE SUBSEQUENT JOB

Weekly Log Earnings
(1) (2) (3) (4)

>2 month notice 0.144*** 0.129*** 0.130*** 0.126***
(0.041) (0.036) (0.044) (0.034)

Controls No Yes No Yes
Weights No No Yes Yes

2370 2370 2370 2370

Note: The table shows results from linear regressions of log weekly wages at the subsequent job on an
indicator for receiving a notice of more than 2 months. The sample used is similar to the main analyti-
cal sample, but it excludes individuals who had not yet found employment at the time of the survey, had
multiple jobs between their previous and current job, or had incomplete earnings information for other
reasons. Robust standard errors are reported in the parenthesis.

Table C.3 describes the incidence of UI take-up in the sample. Figures C.4 and C.5

describe the timing of benefit exhaustion amongst UI takers. Figure C.6 presents the

data with unemployment duration binned in 4 and 9-week intervals. Figure C.7 dis-

plays the fitted hazard from the Cox Mixed Proportional hazard model after accounting

for a comprehensive set of observable characteristics. Finally, Figure C.8 presents the

distribution of notice length from the Survey of Consumer Expectations (SCE).

TABLE C.3: UNEMPLOYMENT INSURANCE TAKE-UP

Unemployment Duration Observations Recieved UI Benefits
0 Weeks 591 0.07
0-4 Weeks 797 0.30
4-8 Weeks 335 0.63
8-12 Weeks 303 0.69
>12 Weeks 1516 0.83

Notes: This table reports the percentage of individuals in the baseline sample who reported receiving UI
benefits by the duration of unemployment.
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FIGURE C.4: TIMING OF BENEFIT EXHAUSTION

Note: The figure presents the proportion of individuals who report having exhausted their UI benefits
by the duration of unemployment. The sample is restricted to individuals in the main analytical sample
who reported receiving UI benefits, and duration is binned in 4-week intervals.

FIGURE C.5: EXTENDED BENEFIT YEARS VS. OTHER YEARS

Note: The figure presents the proportion of individuals who report having exhausted their UI benefits by
the duration of unemployment. The sample is restricted to individuals in the main analytical sample who
reported receiving UI benefits. The solid line presents the proportion for those displaced during 2001-
2004 or 2008-2013. While the dashed line presents the proportion for those displaced during other years
in the sample.
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FIGURE C.6: SURVIVAL AND EXIT RATES WITH ALTERNATIVE BINS

(A) SURVIVAL RATE (B) EXIT RATE

(C) SURVIVAL RATE (D) EXIT RATE

Note: Unemployment duration is binned in 4-week intervals for panels A and B, while it is binned in
9-week intervals for panels C and D. Panel A and C present the proportion of individuals who are un-
employed at the beginning of each interval. Panel B and D present the proportion of individuals exiting
unemployment in each interval amongst those who were still unemployed at the beginning of the interval.
Error bars represent 90% confidence intervals.
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FIGURE C.7: COX PROPORTIONAL HAZARD MODEL

Note: The figure presents estimates of the structural hazard from the Cox proportional hazard model
(coxph in R). The sample consists of 30,731 individuals from the DWS for the years 1996-2020 who
worked full-time at their previous employer and did not expect to be recalled. Observations with missing
values on unemployment duration are excluded. Observable characteristics controlled for include age,
gender, race, education, marital status, the reason for displacement, union status, years of tenure and
earnings at their last job, year of displacement, occupation, industry, and state of residence.

FIGURE C.8: NOTICE LENGTH FROM SCE

Note: Data is from the Survey of Consumer Expectations (SCE) for the years 2013-2019. The sample
consists of 768 individuals who received a layoff notice and reported the notice length.
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APPENDIX D ADDITIONAL PROOFS

D.1 Proof of an Auxiliary Lemma

Lemma D.1. If X ⊥ W |Z and Y ⊥ W |Z for four random variables W, X , Y , and Z ,

then fX |Y,Z ,W (x |y, z, w) = fX |Y,Z(x |y, z).

Proof. Note that by the definition of conditional independence, we can write:

fX |Y,Z ,W (x |y, z, w) =
fX ,Y,Z ,W (x , y, z, w)

fY,Z ,W (y, z, w)
(1)

Furthermore, the numerator in the above expression can be written as:

fX ,Y,Z ,W (x , y, z, w) = fX ,Y |Z ,W (x , y|z, w) fZ ,W (z, w) = fX ,Y |Z(x , y|z) fZ ,W (z, w)

The second equality in the above equation follows from X ⊥W |Z and Y ⊥W |Z .

Similarly, the denominator in equation (1) can be written as:

fY,Z ,W (y, z, w) = fY |Z ,W (y |z, w) fZ ,W (z, w) = fY |Z(y|z) fZ ,W (z, w)

Here, the second equality follows from Y ⊥W |Z .

Plugging back the expressions for the numerator and denominator back into equation

(1), we get:

fX |Y,Z ,W (x |y, z, w) =
fX ,Y |Z(x , y |z)

fY |Z(y |z)
= fX |Y,Z(x |y, z)

D.2 Dealing with Censored Data

The identification result in the main text pertains to the distribution of completed

unemployment durations. However, in many datasets, some individuals are still unem-

ployed at the time of the survey. For these unemployed individuals, we observe how
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long they have been unemployed, but we do not know if and when they will find a

job. Let DC denote the censoring time, that is, the time elapsed since an individual be-

comes unemployed to the time of the survey. For individuals who have already exited

unemployment at the time of the survey, we observe their completed unemployment

duration D in the data. However, we only observe the censoring time DC for currently

unemployed individuals. Specifically, for each individual, we observe ∆ = min{D, DC}
along with an indicator variable for whether the individual was censored or not. Let

G∆(.) denote the cumulative distribution of observed durations ∆.

The following result demonstrates that we can identify the structural hazard up to

D̄ if we assume that the censoring time DC is independent of notice length conditional

on observables.2 We can achieve this by restricting our sample to individuals who were

censored after D̄. To understand why, note that we know the unemployment duration

for individuals censored after D̄ and report a duration of less than D̄. Specifically, for

any duration d < D̄, we have G∆(d|l, X , DC > D̄) = G(d|l, X , DC > D̄).3

Corollary D.1. Under Assumptions 1-3 and DC ⊥ L|X , for any l, l ′ and some in-

teger D̄, the structural hazards {ψl(1, X ),ψl ′(1, X ), {ψ(d, X )}D̄d=2} and the conditional

moments of the type distribution {!(νd |X , DC > D̄)k}D̄d=1 are identified up to scale from

{G∆(d|l, X , DC > D̄), G∆(d|l ′, X , DC > D̄, l)}D̄d=1.

Proof. First note that for d < D̄,

G∆(d|ν, L, X , DC > D̄) = 1− Pr(∆ > d|ν, L, X , DC > D̄)

= 1− Pr(D > d, DC > d|ν, L, X , DC > D̄)

= G(d|ν, L, X , DC > D̄)

2It is common in the literature to assume that DC is independent of ν, which would result in identifi-
cation in the current model as well. However, this assumption is stronger than necessary in this specific
context.

3In theory, it may be possible and more efficient to condition on DC > d at every duration d. However,
in the DWS data, DC is observed only at one-year intervals.
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The second equality is due to ∆ = min{D, DC} and the third equality follows from

d < D̄ < DC .

Given that ν ⊥ L|X and DC ⊥ L|X , it follows that f (ν|L, X , DC) = f (ν|X , DC). Online

D.1 presents this statement and its proof. In which case, we can write

1− G∆(d|l, X , DC > D̄) = ![S(d|ν, l, X )|X , DC > D̄]

We can complete the proof by following the same steps as in the proof for Theorem 1,

but by replacing moments conditional on L and X with moments conditional on L, X ,

and DC > D̄.

Based on Proposition 1 and the result above, we can deduce that if h(d|ν, l, X ) =

ψl(d)φ(X )ν, we can identify the structural hazards from the weighted unemployment

distribution. In this case, the weights must be chosen to ensure a comparable distri-

bution of observable characteristics across notice length, conditional on the censoring

duration being greater than D̄.

APPENDIX E ROBUSTNESS

In this subsection, I present a series of robustness checks. Figure E.1 displays the data

and estimated structural hazard for a sample that excludes individuals with less than

1 month of notice, while Figure E.2 illustrates the same for the unweighted sample. In

both cases, estimates are quantitatively the same as the baseline estimates.

As shown in the paper, the specified Mixed Hazard model is non-parametrically iden-

tified. Figure E.3 presents the non-parametric estimate for the structural hazard, along

with the baseline estimate that assumes a log-logistic functional form for the hazard.

The non-parametric hazard declines even after benefit extension. However, similar to

the baseline estimate, it increases going up to benefit exhaustion and does not fall be-

low the initial hazard, contrary to the observed hazard. In the literature, it is common
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FIGURE E.1: DATA AND ESTIMATES WITH ALTERNATIVE NOTICE CATEGORIES

(A) EXIT RATE
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(B) ESTIMATED STRUCTURAL HAZARD

Note: Short notice refers to a notice of 1-2 months and long notice refers to a notice of greater than 2
months. Panel A presents the exit rate from the data separately for long and short-notice workers. The
solid line in panel B shows the estimated structural hazard from the Mixed Hazard model, while the
dotted line represents the average exit rate for both short and long-notice workers in the data.

FIGURE E.2: DATA AND ESTIMATES USING THE UNWEIGHTED SAMPLE

(A) EXIT RATE
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(B) ESTIMATED STRUCTURAL HAZARD

Note: The figure presents data and estimates for the unweighted analytical sample. Panel A presents the
exit rate from the data separately for long and short-notice workers. The solid line in panel B shows the
estimated structural hazard from the Mixed Hazard model, while the dotted line represents the average
exit rate for both short and long-notice workers in the data.
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FIGURE E.3: ESTIMATES WITH DIFFERENT FUNCTIONAL FORMS
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Note: Figure presents estimates for the structural hazard from the Mixed Hazard model under alternative
parametric assumptions. The dotted line presents the observed exit rate from the data.

to impose a Weibull or a Gompertz hazard. However, I choose the log-logistic form be-

cause it allows the hazard to be non-monotonic. In Figure E.3, I also present estimates

assuming the Box-Cox functional form, given by ψ(d) = exp
!
αdβ−1
β

"
. With β → 0, this

converges to the Weibull hazard, with β = 1 it is equal to Gompertz, and β = 0 implies

a constant hazard. The estimates from this specification result in an increasing hazard.

Figure E.4 presents estimates from the data with unemployment duration binned in

9-week intervals. The estimated structural hazard exceeds the observed hazard and fol-

lows a similar pattern to the baseline estimates. It rises more than the observed hazard

until unemployment insurance (UI) benefits are exhausted and is constant after. Finally,

Figure E.5 estimates the model separately for individuals who were displaced during

years when UI benefits were potentially extended beyond 26 weeks. Two extensions

during the sample period, first, from March 2002 to early 2004 through the Extended

Unemployment Compensation (TEUC) legislation, and second, from July 2008 to the

end of 2013 through the Emergency Unemployment Compensation (EUC) program.
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FIGURE E.4: ESTIMATES WITH UNEMPLOYMENT DURATION BINNED IN 9-WEEK INTERVALS
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Note: The figure presents estimates from the Mixed Hazard model using data with unemployment dura-
tion binned in 9-week intervals. The solid line presents the estimates for the structural hazard, while the
dotted line presents the observed exit rate from the data.

FIGURE E.5: ESTIMATES FOR YEARS WITH EXTENDED BENEFITS
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Note: The figure presents estimates from the Mixed Hazard model for a restricted sample of individuals
who lost their jobs during times when unemployment benefits were possibly extended beyond 26 weeks.
The restricted sample includes individuals displaced between 2001-2004 and 2008-2013. The estimated
structural hazard for the full sample is also presented for comparison.
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APPENDIX F GENERALIZATION

The main identification result in the paper relies on two crucial assumptions: (i) the

notice length is independent of the worker type (conditional on observables), and (ii)

the structural hazard after the initial period is identical regardless of notice length. In

this section, I generalize the identification result and show that it is possible to identify

structural duration dependence and the moments of heterogeneity distribution as long

as we know how the structural hazard after the initial period, as well as the distribu-

tion of heterogeneity, varies across workers with different notice lengths. In particular,

consider two lengths of notice and define κd as the difference between the d th moment

of ν conditional on l ′ and l as follows

κd = µl ′,d −µl,d

where µl,d = E(νd |l). So κ1 is the difference between the average type of workers

with l ′ and l notice lengths. Additionally, define γd as the ratio of structural hazards at

duration d for two lengths of notice,

γd =
ψl ′(d)
ψl(d)

Now if for some D̄ we know κd for d = 1, ..., D̄ and γd for d = 2, ..., D̄, we can identify

the first D̄ structural hazards and moments of type distribution for each notice length

up to scale.4 To see why this is the case, note that for notice length l, the observed

4Alternatively, we could know κd for d = 2, ..., D̄ and γd for d = 1, ..., D̄. Also, in theory, the choice
of defining γd and κd as a ratio or a difference does not impact the proof of identification. In this
case, I define κd as a difference and γd as a ratio for the convenience of varying these parameters when
examining the changes in estimates.
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hazards at d = 1 and d = 2 can be written as:

h̃(1|l) =ψl(1)µl,1

h̃(2|l) =ψl(2)µl,1

#
1− h̃(1|l)(µ2,l/µ

2
1,l)

1− h̃(1|l)

$

As before, if we knew the extent of heterogeneity across workers, i.e. the variance of ν

amongst l notice individuals, we would be able to infer structural duration dependence

ψl(2)/ψl(1) from observed duration dependence h̃(2|l)/h̃(1|l). Now, we also observe

the hazard conditional on notice length l ′, which is given by

h̃(2|l ′) = γ2ψl(2)(µl,1 + κ1)

#
1− h̃(1|l ′)
%
(µ2,l + κ2)/(µ1,l + κ1)2

&

1− h̃(1|l ′)

$

So now if we compare h̃(2|l ′) to h̃(2|l), as before, the difference between the two de-

pends on µ2,l , however, now it also depends on γ2, κ1, and κ2. So if we know γ2, κ1,

and κ2, we can still back out µ2,l . The intuition for the result is that we know how

the structural hazards for different notice lengths at d = 2 should vary if there was no

heterogeneity. Then if we observe the structural hazards being different over and above

what we would expect with no heterogeneity, we can attribute that to the presence of

heterogeneity.

Theorem F.1. For some l, l ′, define κd = µl ′,d −µl,d and γd =ψl ′(d)/ψl(d). Then for

some D̄, if {κd}D̄d=1 and {γd}D̄d=2 are known, then the baseline hazards {ψl(d),ψl ′(d)}D̄d=1

and the conditional moments of the type distribution {µl,d ,µl ′,d}D̄d=1 are identified up to

a scale from {G(d|l), G(d|l ′)}D̄d=1.

Proof. First note that we can write,

g(d|l) =ψl(d)
d'

k=1

ck(ψl,d−1)µl,k (2)
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where ψl,d−1 = {ψl(s)}d−1
s=1 , ck(ψl,0) = 1, and

ck(ψl,d−1) =

(
))))*
))))+

ck(ψl,d−2) for k = 1

ck(ψl,d−2)−ψl(d − 1)ck−1(ψl,d−2) for 1< k ≤ d

0 for k > d

Now we can prove the statement of the theorem by induction. First, note that the

statement is true for D̄ = 1. To see this, note that

g(1|l) =ψl(1)µl,1 g(1|l ′) =ψl ′(1)(µl,1 + κ1)

We will normalize µl,1 = 1. Then we can solve for ψl(1) = g(1|l) and ψl ′(1) =
g(1|l ′)
1+κ1

.

Now let us assume that the statement is true for D̄ = d − 1. Then we can identify

{ψl(s),ψl ′(s)}d−1
s=1 and {µl,s,µl ′,s}d−1

s=1 from {G(s|l), G(s|l ′)}d−1
s=1 . To complete the proof, we

need to prove that the statement is true for D̄ = d as well.

Denote Γd =
,d

s=1 γs and Ψl(d) =
,d

s=1ψl(s). Now note that,

g(d|l) =ψl(d)
d'

k=1

ck(ψl,d−1)µl,k

=ψl(d)

-
d−1'

k=1

ck(ψl,d−1)µl,k + cd(ψl,d−1)µl,d

.

=ψl(d)

-
d−1'

k=1

ck(ψl,d−1)µl,k + (−1)d−1Ψl(d − 1)µl,d

.

From the above equation we can solve for µl,d as follows:

µl,d =
(−1)d

Ψl(d − 1)

-
d−1'

k=1

ck(ψl,d−1)µl,k −
g(d|l)
ψl(d)

.
(3)
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Using the fact that µl ′,d = κd +µl,d , we can write g(d|l ′) as follows:

g(d|l ′) =ψl ′(d)

-
d−1'

k=1

ck(ψl′,d−1)µl ′,k + (−1)d−1Ψl ′(d − 1)(κd +µl,d)

.

By plugging in µl,d from equation (3) in the above expression, we can solve for ψl ′(d)

as follows:

ψl ′(d) =
g(d|l ′)− Γd g(d|l)

/d−1
k=1 ck(ψl′,d−1)µl ′,k − Γd−1

/d−1
k=1 ck(ψl,d−1)µl,k + (−1)d−1κdΨl ′(d − 1)

Plugging this back in expression for µl ′,d , we can solve for

µl ′,d =
(−1)d

Ψl ′(d − 1)

!
g(d|l ′)Γd−1

"d−1
k=1 ck(ψl,d−1)µl,k − Γd g(d|l)

"d−1
k=1 ck(ψl′,d−1)µl ′,k − (−1)d−1 g(d|l ′)κdΨl ′(d − 1)

g(d|l ′)− Γd g(d|l)

#

So as long as the denominators in the expressions for ψl ′(d) and µl ′,d are not zero we

would have identification.

We can see that with κd = 0 for d = 1, .., D̄ and γd = 1 for d = 2, .., D̄, the above

theorem is equivalent to the result in the main text. Also, note that the theorem can

more generally be applied to situations with other observable characteristics. For in-

stance, with κd = 0 for d = 1, .., D̄ and γd = γ for d = 1, .., D̄, the above is equivalent to

the discrete MPH model. In the following subsection, I investigate how the estimates

of structural hazard vary under different assumptions on κd and γd .

F.1 Implementation

In our estimation, we utilized two lengths of notice, <2 months (S) and >2 months

(L). Let’s define κd = µL,d − µS,d and γd = ψL(d)/ψS(d). For our baseline estimates,

we assumed that the distribution of heterogeneity for individuals with these different

notice lengths was identical, i.e., κd = 0 for all d. We also assumed that after the first

period, the structural hazards for both the groups were the same, so γd = 1 for d > 1.
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I now study how our estimates change if the underlying distribution of heterogeneity

and/or the structural hazards after the initial period are different for workers with dif-

ferent lengths of notice. In particular, I perform the following three exercises.

1. Allow average type to vary

I relax the assumption that notice length is independent of a worker’s type and let

the mean of the heterogeneity distribution vary across the two groups. I assume that

apart from the mean, the rest of the shape of the distribution for the two groups is

identical. Since we have D̄ = 4, this implies that the 2nd, 3rd, and 4th central moment,

the variance, skewness, and kurtosis, for the two groups are identical. The non-central

moments would be impacted by scale changes, so all four κds will be non-zero. Denote

central moments by µ̃. Note that, µ̃2 = µ2 −µ2
1. Then since we need µ̃S,2 = µ̃L,2,

µS,2 −µ2
S,1 = µS,2 + κ2 − (µS,1 + κ1)

2→ κ2 = κ1(κ1 + 2µS,1)

Similarly, noting that µ̃3 = µ3 − 3µ1µ2 + 2µ3
1 and setting µ̃S,3 = µ̃L,3, implies κ3 =

κ1(κ2
1 + 3κ1µS,1 + 3µS,2). And since, µ̃4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1, then setting

µ̃S,4 = µ̃L,4, we would have κ4 = κ1(κ3
1 + 4κ2

1µS,1 + 6κ1µS,2 + 4µS,3).

Now assuming γd = 1 for d > 1 and normalizing µS,1 = 1, I reestimate the model

for 25 equidistant values for κ1 in the interval [−0.1, 0.1].5 κ2,κ3 and κ4 are defined

as above. Residuals from this exercise are presented in panel A of Figure F.1. In panel

B, I present the estimates for structural duration dependence for the value of κ that

minimizes the residuals. The minimizing value of κ is close to zero, leading to an

identical estimate for the structural hazard as the baseline.

2. Allow structural hazards after the first period to vary

5For values beyond this interval, the model fit deteriorates drastically, and the estimated moments of
the heterogeneity distribution blow up in either direction.
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Now as in the baseline estimation, I assume notice length to be independent of worker

type. But now we will allow structural hazards beyond the initial period to vary for

workers with different lengths of notice up to some constant γ. This corresponds to

assuming κd = 0 for d = 1, .., D̄ and γd = γ for d = 2, .., D̄. I estimate the model for

25 equidistant values for γ in the interval [0.95, 1.2]. Results from this exercise are

presented in Figure F.2. The results point towards the structural hazard being slightly

greater for individuals with a longer notice, even beyond the first 12 weeks. As we

can see from panel B of Figure F.2, this suggests that the baseline estimates might be

underestimating the role of dynamic selection. The reason for this is that in the case that

the structural hazard for long-notice workers is higher even beyond the initial period,

the gap between the long and short-notice average exit rates due to composition would

be greater than what we assumed in the baseline estimation.

3. Allow the average type and structural hazards after the first period to vary

Finally, I create a 20×20 grid for values of κ ∈ [−0.1, 0.1] and γ ∈ [0.95, 1.20]. I rees-

timate the model for each point in the grid. Panel A of Figure F.3 presents the residuals

for different values in the grid. While panel B of Figure F.3 presents estimates at the

minimizing values. The results from the exercise point towards no mean differences

between short and long-notice groups, but a higher structural hazard for long-notice

workers beyond the initial period. This results in an estimate for the structural hazard

that increases more than the baseline estimate.
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FIGURE F.1: ALLOW AVERAGE TYPE TO VARY
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(B) STRUCTURAL HAZARD

Note: The figure presents results from the estimation of a more generalized Mixed Hazard model, where
the mean of the heterogeneity distribution for individuals with different lengths of notice is allowed to
vary according to the parameter κ1. Panel A presents the residuals from GMM estimation for different
values of κ1. Panel B presents the estimates of structural hazard for different values of κ1.

FIGURE F.2: ALLOW STRUCTURAL HAZARDS AFTER THE FIRST PERIOD TO VARY
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(B) STRUCTURAL HAZARD

Note: The figure presents results from the estimation of a more generalized Mixed Hazard model, where
the structural hazard after the initial period for individuals with different lengths of notice is allowed to
vary according to the parameter γ. Panel A presents the residuals from GMM estimation for different
values of γ. Panel B presents the estimates of structural hazard for different values of γ.
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FIGURE F.3: ALTERNATIVE ASSUMPTIONS ON STRUCTURAL HAZARDS AND HETEROGENE-
ITY DISTRIBUTION
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(B) STRUCTURAL HAZARD

Note: The figure presents results from the estimation of a more generalized Mixed Hazard model. The
mean of the heterogeneity distribution for individuals with different lengths of notice is allowed to vary
according to the parameter κ1. The structural hazard after the initial period for individuals with different
lengths of notice is allowed to vary according to the parameter γ. Panel A presents the residuals from
GMM estimation for different values of κ1 and γ. Panel B presents the estimates of structural hazard for
the case where κ1 = 0 and γ = 1 (solid line) and for the case when κ1 and γ take values that minimize
the residual in Panel A (dashed line).
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APPENDIX G SEARCH MODEL SIMULATION

In this section, I simulate data from the search model presented in the main text. To

incorporate multiple notice periods, I let the offer rate in the first period be different

for long (L) and short (S) notice individuals. I set νH = 1, νL = 0.5 and π = 0.5,

δL(1) = 1.25,δS(1) = 1, and δ(d) = 0.95 for d = 2, 3, 4. The rest of the parameters

are set as in the calibration of the model in the main text. I assume there are 2500

individuals, half of whom receive the L length notice. I simulate data on exit rates for

this model 1000 times. The average of estimates for the structural hazard is presented

in Figure G.1, while the distribution of the estimates is presented in Figure G.2.

FIGURE G.1: SIMULATION: AVERAGE ESTIMATE
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Note: The solid line presents the average estimate from 1000 simulations of the search model. The dashed
line presents the structural duration dependence ![h(d|ν)] implied by the model. While the dotted line
presents the observed structural duration dependence ![h(d|ν)|D ≥ d] implied by the model.
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FIGURE G.2: ESTIMATES USING SIMULATED DATA FROM THE SEARCH MODEL
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Note: The figure presents the distribution of estimates of structural duration dependence on simulated
data from the search model. The vertical lines represent the mean and median of the distribution for
each structural hazard.
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