Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
	Duratio	on Dependence A	and Heterogen	EITY:	
	Learni	ING FROM EARLY	NOTICE OF LAYO	OFF	
		Div Bha	gia		
		California State Unive	Sid		
		California State Unive	rsity, Fullerton		
		December 1	5,2023		
			,		
I					1 / 26

Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
		Introdu	CTION		
● The ol with th → Ex	bserved job-findin he duration of ur xcept for a spike a	ng rate declines nemployment t UI exhaustion	0.3 -	Unconditional Controlling for C	Dbservables
Longe the oc ↓ ne ↓ e. ca	r unemployment lds of exiting une egative duration d g. employer discri apital depreciation	duration reduces employment? ependence mination, human , etc.	Exit rate Exit rate		
• Howe tend t	ver, long-term ur o be negatively s nobserved heterog	nemployed also elected geneity	2 6 10 14 Wee	4 18 22 26 30 34 ks since unemploy	38 42 46 /ed
	beller workers ex	it early	Source: Displaced Wor	rker Supplement, CP	5 1996-2020

Other Countries

Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix		
		Introduc	CTION				
• Long unol	 Long literature in economics tries to disentangle duration dependence from unobserved heterogeneity 						
• Why	y do we care?						
\rightarrow	High incidence o	f long-term unemploy	ment (LTU)				
	Negati	ve duration depender	$\operatorname{hce} \longrightarrow \begin{pmatrix} LTU \\ LTU \end{pmatrix}$)			
\rightarrow	Implications for u	inemployment policies	S				

Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix	
		Introduc	CTION			
 Long literature in economics tries to disentangle duration dependence from unobserved heterogeneity 						
 Why do we care? → High incidence of long-term unemployment (LTU) 						
Negative duration dependence $\longrightarrow \begin{pmatrix} LTU \\ LTU \end{pmatrix}$						
\rightarrow	\rightarrow Implications for unemployment policies					
Thi	s Paper: Levera	ge variation in the <i>le</i>	ngth of notice that v	vorkers recei	ive	

before being displaced to disentangle these two sources of decline in the job-finding rate

Pin down heterogeneity → Estimate duration dependence

Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
		Overvi	EW		
• Use	data from the D	isplaced Worker Su	oplement (DWS)		
• •	Compare similar v Job-finding rate f Suggests that "be	vorkers with different or long-notice worker tter" workers exit ear	notice lengths s <mark>initially higher</mark> , but ly from the long-noti	lower later in ce group	the spell
• Set dep	up a Mixed Haza <mark>endence</mark> is ident	rd model and specif ified while allowing	y conditions under for arbitrary hetero	which <mark>durat</mark> i geneity	ion

- Estimate the model using Generalized Method of Moments (GMM) and find:
 - 60% of the decline in exit rate over first five months due to duration dependence
 - After that a worker's job-finding probability increases until benefit exhaustion and remains constant after
- Calibrate a search model and show that findings are consistent with
 - Standard search theory + \downarrow returns to search early in the spell

Appendix

Contribution to the Literature

Identification & Estimation of Mixed Hazard Models

Elbers and Ridder (1982), Heckman and Singer (1984), Honoré (1993), Van den Berg et. el. (1996), Brinch (2007), Hausman and Woutersen (2014), Alvarez et al. (2021)

→ minimal restrictions, unconfoundedness, consistent estimator

Duration Dependence in Job-Finding

Machin and Manning (1999), Krueger and Mueller (2011), Kroft et. al. (2013), Jarosch and Pilossoph (2019), Alvarez et al. (2020), Mueller et. al. (2021)

 $\, {\scriptstyle {\scriptstyle \mathsf{L}}} \,$ robust, flexible estimate in the US context

Spike at Unemployment Exhaustion

Katz and Meyer (1990), Ganong and Noel (2019), Boone and van Ours (2012), DellaVigna et. al. (2017), Marinescu and Skandalis (2019), DellaVigna et. al. (2021)

 $\, {\scriptstyle {\scriptstyle \leftarrow}} \,$ explanation: decline after exhaustion due to compositional changes

_	Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
L	Introduction	Context and Data	Context A	ND DATA	Conclusion	Appendix
_						

Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix		
		DATA DESC	RIPTION				
 Displaced Worker Supplement (DWS) 1996-2020 Biennial supplement of the CPS Workers who lost/left a job in the last three years due to, (1) plant closure, (2) position being abolished or (3) insufficient work 							
 Sample consists of workers aged 21-64: employed full-time at their previous job for 6+ months with health insurance did not expect to be recalled received a notice of <2 or >2 months exclude those who lost a job last year 							
• Rev	veight the sample	e using inverse prop	ensity score weight	ting			
► Inst	titutional Details → All V	Vorkers • Notice Length from	n SCE	► UI Take-Up	UI Timing		

DESCRIPTIVE STATISTICS: UNBALANCED SAMPLE

	<2 months	>2 months	Difference
Age	42.24	43.85	1.61***
Female	0.43	0.46	0.04**
Married	0.59	0.65	0.05***
Black	0.10	0.08	-0.02**
College Degree	0.39	0.38	0.00
Plant Closure	0.40	0.63	0.23***
Union Membership	0.15	0.15	0.00
In Metro Area	0.83	0.82	-0.01
Years of Tenure	6.53	9.22	2.69***
Log Earnings	6.50	6.56	0.05***
Observations	2147	1409	

DESCRIPTIVE STATISTICS: BALANCED SAMPLE

	<2 months	>2 months	Difference
Age	43.03	42.97	-0.06
Female	0.45	0.46	0.01
Married	0.61	0.61	-0.01
Black	0.09	0.09	0.00
College Degree	0.39	0.40	0.01
Plant Closure	0.49	0.49	-0.01
Union Membership	0.15	0.16	0.00
In Metro Area	0.83	0.83	0.00
Years of Tenure	7.74	7.78	0.03
Log Earnings	6.53	6.53	-0.01
Observations	2147	1409	

oduction	Context and Data	Econometric Fra	mework	Estimation and Results	Conclusion Appendix
	Job-Fi	nding Ra	te Ear	LY IN THE SI	PELL
		(1)	(2)	(3)	(4)
		Panel A	A. I{Unem	ployment duration	= 0 weeks}
>2 montl	h notice	0.112*** (0.013)	0.087* (0.01		* 0.085*** (0.014)
		Panel B	. I{Unemp	loyment duration <	≤ 12 weeks}
>2 montl	h notice	0.091*** (0.017)	0.082* (0.018	 8) 0.074*** 0.020) 	* 0.074*** (0.018)
Controls Weights		No No	Yes No	No Yes	Yes Yes
		3556	3556	3556	3556
					► Earnings

_	Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
-	Introduction	Context and Data	DNOMETRIC	Estimation and Results	K	Appendix
-						

Ť

MIXED HAZARD MODEL IN DISCRETE TIME

- Unemployment duration, $D \in \{1, 2, 3, ...\}$
- G(.) and g(.) denote cumulative and probability distribution of D, respectively
- Workers have some fixed unobservable type $\nu \sim F(.)$
- Prior to layoff, workers receive a notice of length L
- Vector of observable characteristics $X \sim F_X(.)$
- Hazard rate $h(d|\nu, l, X)$ represents an individual's probability of exiting unemployment at duration *d*, given that the individual has not exited yet.

Appendix

MIXED HAZARD MODEL IN DISCRETE TIME

Assumption 1 (Mixed Hazard)

An individual's exit probability at duration d is given by:

 $h(d|\nu, I, X) = \psi_{I}(d, X)\nu$

where

- structural hazard $\psi_{\mathsf{I}}(\mathsf{d},\mathsf{X}) \in (\mathsf{0},\infty)$
- worker's type $\nu \in (0, \bar{\nu}]$ with $\bar{\nu} = 1/\max_{d,l,X} \{\psi_l(d, X)\}$

IDENTIFICATION ISSUE

An individual worker's hazard at each duration:

 $h(d|\nu, I, X) = \psi_I(d, X)\nu$

In the data, we observe the average hazard rate at any duration:

$$\tilde{h}(d|l,X) = \frac{\Pr(D = d|l,X)}{\Pr(D \ge d|l,X)} = \underbrace{\psi_{l}(d,X)}_{\substack{\text{Structural Duration} \\ \text{Dependence}}} \cdot \underbrace{\mathbb{E}(\nu|D \ge d,l,X)}_{\substack{\text{Surviving at } d}}$$

IDENTIFYING ASSUMPTIONS

Assumption 2 (Conditional Independence)

The length of notice L is independent of the worker's unobservable type ν , given observable characteristics X, i.e., L $\perp \nu | X$.

Assumption 3 (Stationarity)

For all I, X, and d > 1,

$$\psi_{\mathsf{I}}(\mathsf{d},\mathsf{X}) = \psi(\mathsf{d},\mathsf{X})$$

Discussion
 Validity

IDENTIFICATION RESULTS

Theorem 1

Under Assumptions 1–3, for any I, I' with $\psi_l(1, X) \neq \psi_{l'}(1, X)$ and some integer \overline{D} , the structural hazards $\{\psi_l(1, X), \psi_{l'}(1, X), \{\psi(d, X)\}_{d=2}^{\overline{D}}\}$ and the conditional moments of the type distribution $\{\mathbb{E}(\nu^k|X)\}_{k=1}^{\overline{D}}$ are identified up to a scale from the conditional duration distribution $\{G(d|I, X), G(d|I', X)\}_{d=1}^{\overline{D}}$.

Intuition

I	Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
			Identification	RESULTS		

Proposition 2

Suppose Assumptions 1-3 and $\psi_l(d, X) = \psi_l(d)\phi(X)$ hold. For any l, l' with $\psi_l(1) \neq \psi_{l'}(1)$, consider the set of weights $\omega_l(x)$ and $\omega_{l'}(x)$ that ensure

 $f_X^{\omega}(\mathbf{x}) = f_X(\mathbf{x}|\mathbf{l}) = f_X(\mathbf{x}|\mathbf{l}')$

for all x on some common support \mathcal{X} of $f_X(.|I)$ and $f_X(.|I')$. Then, the structural hazards $\{\psi_I(1), \psi_{I'}(1), \psi(d)\}_{d=2}^{\bar{D}}$ and the weighted moments of the type distribution $\{\mu_k^{\omega}\}_{k=1}^{\bar{D}}$ are identified up to a scale from the weighted unemployment distribution $\{G^{\omega}(d|I), G^{\omega}(d|I')\}_{d=1}^{\bar{D}}$.

Related Literature

Introd	uction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
		Ea				
		ES	TIMATION AI	ND RESULTS		

Introduction Context and Data Econometric Framework Estimation and Results Conclusion A	ppenuix
ESTIMATION	

- Construct a consistent estimator for the structural hazards and weighted moments of the unobserved heterogeneity distribution using Generalized Method of Moments (GMM) based on Proposition 2
- Estimator utilizes weighted moments of the duration distribution where weights are proportion to the estimated propensity scores
- Derive the asymptotic distribution of the estimator

Details on Estimation and Inference

Appendix

SUMMARIZING THE RESULTS

First five months

- Under half of the decline due to structural duration dependence
- Cannot rule out employer discrimination (Kroft et. al., 2013)

Leading up to benefit exhaustion

- Individual worker's job-finding probability increases
- Workers search harder and/or lower their expectations

After benefit exhaustion

- No further decline in a worker's job-finding probability
- Decline after UI exhaustion consistent with standard search theory
 Calibration
 - → limited scope for behavioral explanations (DellaVigna et. al., 2017; 2021)

CONCLUSION

- Disentangle the role of structural duration dependence from heterogeneity in determining the job-finding rate using variation in notice lengths
- Document that workers with longer notice more likely to exit unemployment early; however, their exit rate is lower at later durations.
 - $\, {\scriptstyle \hookrightarrow \,}$ points towards the presence of heterogeneity across workers
- Utilize these reduced-form moments and estimate a Mixed Hazard model
- Key takeaway: substantial heterogeneity across job seekers
 - Gonly about half of the decline in the exit rate over the first five months represents a decline in an individual's exit probability
- Highlights importance of incorporating heterogeneity in economic analysis

THANK YOU!

Contact Information:

Div Bhagia dbhagia17@gmail.com www.dbhagia.com

Scan for the full paper.

Introduction	Context and Data	Econometric Framework	Estimation and Results	Conclusion	Appendix
			DIV		
		APPEN	DIX		
+					

Data and Moments Appendix

- Job-Finding Rate: Other Countries
- Institutional Details
- Notice Length from SCE
- Sample vs. All Workers
- Propensity Score Estimation
- Propensity Score Distributions

- UI Take-Up
- UI Timing
- Length of Notice over Time
- Industry and Occupation
- Earnings at Subsequent Job
- 4-Week and 9-Week Bins

JOB-FINDING RATE: OTHER COUNTRIES

Gerard Domènech and Vannutelli (2020)

France

Marinescu and Skandalis (2021)

DellaVigna, Heining, Schmieder, and Trenkle (2021)

INSTITUTIONAL DETAILS

- The Worker Adjustment and Retraining Notification (WARN) Act requires a 60 calendar-day notice
 - employers with 100 or more full-time employees
 - plant closures (shutdown of employment site, 50+ workers)
 - mass layoffs (one-third if 50+ or 500+ workers)
 - little variation across states (except California, New York, Illinois)
- Workers terminated without cause, eligible for UI benefits for a limited duration
 - maximum period for receiving benefits, 26 weeks for most states
 - for 9 states, uniform benefit duration of 26 weeks
 - temporary programs to extend benefits during recessions
 - benefit exhaustion at 26 weeks for an average worker in the sample
 Show

SAMPLE VS. ALL WORKERS

	Sample	DWS	CPS
	(1)	(2)	(3)
Age	42.87	40.61	42.17
Female	0.44	0.44	0.52
Black	0.09	0.11	0.10
Married	0.61	0.54	0.60
Educational Attainment			
HS Dropout	0.04	0.09	0.09
HS Graduate	0.57	0.65	0.60
College Degree	0.39	0.26	0.30
Employment Status			
Employed	0.89	0.67	0.74
Unemployed	0.09	0.21	0.04
NILF	0.02	0.12	0.21
Observations	3556	44707	969604

PROPENSITY SCORE WEIGHTING

- Estimate propensity scores $\hat{p}(X_i)$ using a logistic regression where odds of receiving a longer notice are a function of:
 - Demographics: age, gender, marital status, race, education
 - Characteristics of the lost job:
 - laid off due to plant closure
 - union status
 - tenure and earnings
 - occupation fixed effects
 - metro area status; state fixed effects
 - displacement year \times industry fixed effects
- Reweight the data using the following weights for workers:

Long-notice:
$$\frac{1}{\hat{p}(X_i)}$$
 Short-notice: $\frac{1}{1-\hat{p}(X_i)}$

PROPENSITY SCORE DISTRIBUTIONS

UNEMPLOYMENT INSURANCE TAKE-UP

Unemployment Duration	Observations	Recieved UI Benefits
0 Weeks	591	0.07
0-4 Weeks	797	0.30
4-8 Weeks	335	0.63
8-12 Weeks	303	0.69
>12 Weeks	1516	0.83

UNEMPLOYMENT INSURANCE TIMING

Appendix: Robustness

EARNINGS AT SUBSEQUENT JOB

	Weekly Log Earnings			
	(1)	(2)	(3)	(4)
>2 month notice	0.144***	0.129***	0.130***	0.126***
	(0.041)	(0.036)	(0.044)	(0.034)
Controls	No	Yes	No	Yes
Weights	No	No	Yes	Yes
	2370	2370	2370	2370

ECONOMETRIC FRAMEWORK APPENDIX

- Discussion of Stationarity Assumption
- Intuition for Identification
- Related Literature on Mixed Hazard Models
- Estimation and Inference
- Point Estimates

DISCUSSION: STATIONARITY ASSUMPTION

- The *Stationarity Assumption* states that an individual's exit probability is not impacted by length of notice later in the spell
- In other words, individual exit probabilities only vary with unemployment duration and not with time spent searching for a job
- Consistent with:
 - human capital depreciation
 - employer discrimination
 - large class of search models (even with non-stationarity such as Lentz and Tranæs (2005))

POTENTIAL VIOLATIONS OF THE STATIONARITY ASSUMPTION

Case I: time spent searching increases an individual's exit probability

- → For instance, if workers learn while searching and become better at job search (Burdett and Vishwanath, 1988; Gonzalez and Shi, 2010)
- $\, {\scriptstyle {\scriptstyle \leftarrow}} \,$ Those with longer notice would have a higher hazard even at later durations
- → Underestimate the extent of heterogeneity

Case II: time spent searching decreases an individual's exit probability

- → Stock-flow model (Coles and Smith, 1998)
- $\, {\scriptstyle {\scriptstyle \leftarrow}} \,$ Those with shorter notice have a higher hazard at later durations
- → Overestimate the extent of heterogeneity

VALIDATING ASSUMPTIONS

- Under the identifying assumptions, lower exit rate of long-notice workers after the initial 12 weeks attributed to heterogeneity
- Alternative explanations:
 - Long-notice workers (even conditional on observables) negatively selected
 - Time spent searching decreases an individual's exit probability
 - $\, {\scriptstyle {\scriptstyle {\rm L}}} \,$ e.g. Stock-Flow model (Coles and Smith, 1998) or discouragement
- Test for these by estimating a more general model that allows:
 - the mean of the underlying type distributions to vary by notice length
 - structural hazards to vary with notice beyond the initial period by a constant

Extension
 Back

INTUITION

- Focus on the case without observables
- Individual worker's exit probability:

$$h(\boldsymbol{d}|\boldsymbol{l},\nu)=\psi_{\boldsymbol{l}}(\boldsymbol{d})\nu$$

• Observed exit rate:

$$\tilde{h}(d|l) = \psi_l(d) \mathbb{E}[\nu|D \ge d]$$

• Hazard rate in second vs first period:

$$\frac{\tilde{h}(2|l)}{\tilde{h}(1|l)} = \frac{\psi(2)}{\psi_l(1)} \cdot \frac{\mathbb{E}[\nu|D \geqslant 2]}{\mathbb{E}[\nu|D \geqslant 1]} = \frac{\psi(2)}{\psi_l(1)} \cdot \left(\frac{1 - \tilde{h}(1|l) \cdot \frac{\mathbb{E}[\nu^2]}{\mathbb{E}[\nu]^2}}{1 - \tilde{h}(1|l)}\right)$$

INTUITION

Second vs first period:

Heterogeneity captured by: $var(\nu) = \mathbb{E}[\nu^2] - \mathbb{E}[\nu]^2$

• No heterogeneity:
$$var(\nu) = 0 \rightarrow Het = 1 \rightarrow \frac{\tilde{h}(2|l)}{\tilde{h}(1|l)} = \frac{\psi(2)}{\psi_l(1)}$$

• With heterogeneity:
$$var(\nu) > 0 \rightarrow Het > 1 \rightarrow \frac{\tilde{h}(2|l)}{\tilde{h}(1|l)} < \frac{\psi(2)}{\psi_l(1)}$$

INTUITION

- If we knew the extent of heterogeneity as captured by $Het = \mathbb{E}[\nu^2]/\mathbb{E}[\nu]^2$, we could back out structural dependence $\psi(2)/\psi_l(1)$ from observed exit rates
- The variation in notice lengths allows us to learn about the heterogeneity
- For two lengths of notice *l* and *l*':

$$\frac{\tilde{h}(2|l)}{\tilde{h}(2|l')} = \left(\frac{1 - \tilde{h}(1|l) \cdot \mathsf{Het}}{1 - \tilde{h}(1|l)}\right) \left/ \left(\frac{1 - \tilde{h}(1|l') \cdot \mathsf{Het}}{1 - \tilde{h}(1|l')}\right)\right)$$

- WLOG, $\tilde{h}(\mathbf{1}|\mathbf{l}') > \tilde{h}(\mathbf{1}|\mathbf{l})$, then
 - No heterogeneity: $\textit{Het} = 1 \rightarrow \tilde{h}(2|l') = \tilde{h}(2|l)$
 - With heterogeneity: $\textit{Het} > 1 \rightarrow \tilde{h}(2|\textit{l}') < \tilde{h}(2|\textit{l})$

Related Literature on Mixed Hazard Models

- Existing non-parametric identification results for the Mixed Hazard model rely on variation in an exogenous variable that enters the structural hazard multiplicatively (Elbers and Ridder, 1982; Heckman and Singer, 1984).
- The practical implementation of these results has been limited due to the challenge of locating a variable that meets this criterion, as well as the absence of a convenient estimator.
- Another approach to identification is using multiple spell data (Honoré, 1993). However, this approach assumes that the unobserved characteristics of the jobseeker remain constant across repeated spells.

RELATED LITERATURE ON MIXED HAZARD MODELS

- The framework I employ is analogous to a Mixed Hazard model with a time-varying exogenous variable.
- Brinch (2007) provides a non-constructive proof for this model in continuous time, the key distinction here is that the exposition is in discrete time, which leads to a consistent estimator for the model's parameters using GMM.
- To the best of my knowledge, Alvarez et al. (2021) is the only other study that utilizes moment conditions from a discrete version of the Mixed Hazard model and constructs a GMM estimator. However, their identification result and estimator pertain to multiple spell data.
- In addition, none of the existing results or estimators allow for unconfoundedness and require independence of the main variable

- Normalize the first weighted moment to $\mu_1^\omega = \mathbf{1}$
- With J possible notice lengths, the vector of 2(D

 I = {{ψ_l(1)}^J_{l=1}, {ψ(d)}^D_{d=2}, {μ^ω_k}^D_{k=2}}
- For each individual *i*, define the following moment condition:

$$m_i(I,d,\Theta) = \mathbb{I}\{L_i = I\}w_i\big[\mathbb{I}\{D_i = d\} - g^w(d|I;\Theta)\big]$$

• Under the model assumptions, we have

$$\mathbb{E}[m_i(\Theta)] = 0$$
, where $m_i(\Theta) = \{\{m_i(l, d, \Theta)\}_{d=1}^D\}_{l=1}^J$

Note that $m_i(\Theta)$ contains $J \times \overline{D}$ moment conditions

To construct the GMM estimator, note that the corresponding sample average for $\mathbb{E}[m_i(\Theta)]$:

$$\hat{m}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} m_i(\Theta) = \left\{ \left\{ \pi_l [\hat{g}^{\omega}(d|l) - g^{\omega}(d|l;\Theta)] \right\}_{d=1}^{\bar{D}} \right\}_{l=1}^{J}$$

Here,

- *n* is the sample size,
- $\pi_l = (\sum_{L_i=l} w_i)/n.$
- *ĝ*^ω(*d*|*I*) = (∑_{*i*:L_{*i*}=*I*} *w_i*𝔅{*D_i* = *d*}) / (∑_{*i*:L_{*i*}=*I*} *w_i*) is the sample counterpart of the weighted duration distribution

The GMM estimator $\hat{\Theta}$ is then given by:

$$\hat{\Theta} = \arg \max_{\Theta} \hat{m}(\Theta)' \hat{W} \hat{m}(\Theta)$$

- When the model is just-identified, \hat{W} is given by the identity matrix.
- In the case of over-identification, the efficient weighting matrix is given by $\hat{W} = \hat{\Omega}^{-1}$, where $\hat{\Omega} = \left[\frac{1}{n}\sum_{i=1}^{n}m_i(\hat{\Theta})m_i(\hat{\Theta})'\right]^{-1}$. Using the two-step estimation process, we can compute $\hat{\Theta}$.

The asymptotic distribution of this estimator is given by

$$\sqrt{n}(\hat{\Theta} - \Theta) \rightarrow N(0, (\hat{M}'\hat{\Omega}^{-1}\hat{M})^{-1}), \quad \text{where} \ \hat{M} = \partial \hat{m}(\hat{\Theta}) / \partial \Theta$$

- Due to small sample size, need to minimize the number of parameters
- Assume that the structural hazard $\psi(d)$ for d > 1 has a log-logistic form:

$$\psi(\boldsymbol{d}) = \frac{(\alpha_2/\alpha_1)(\boldsymbol{d}/\alpha_1)^{\alpha_2-1}}{\mathbf{1} + (\boldsymbol{d}/\alpha_1)^{\alpha_2}}, \quad \alpha_1 > \mathbf{0}, \alpha_2 > \mathbf{0}$$

- The hazard specified above is:
 - monotonically decreasing when $\alpha_2 \leq 1$
 - unimodal, initially increasing and subsequently decreasing when $\alpha_2 > 1$
- Flexible parametrization for the structural hazard that allows non-monotonicity, unlike other commonly used parametrizations, such as Weibull or Gompertz

Parameter	Explanation	Estimate	SE		
Panel A: Estin	nated Parameters				
$\psi_{S}(1) \\ \psi_{L}(1) \\ \alpha_{1} \\ \alpha_{2}$	Structural hazard 0-12 weeks: Short Structural hazard 0-12 weeks: Long r Scale parameter for $\psi(d)$ Shape parameter for $\psi(d)$	notice 0.49 notice 0.55 1.21 1.46	0.01 0.01 0.09 0.45		
Panel B: Duration Dependence					
$ar{\psi}({f 1})\ \psi({f 2})\ \psi({f 3})\ \psi({f 4})$	Structural hazard: 0-12 weeks Structural hazard: 12-24 weeks Structural hazard: 24-36 weeks Structural hazard: 36-48 weeks	0.52 0.40 0.61 0.63	0.01 0.05 0.08 0.09		
Hansen-Sargan Test					
Test statistic: 2.14		Critical value, $df = 1, \chi^2_{0.05}$;: 3.84		
			► Back		

Robustness Appendix

- Alternative Notice Categories
- Unweighted Sample
- Different Functional Forms
- Alternative Binning

- Extensions to relax assumptions
 - Allow average type to vary
 - Allow structural hazards to vary
 - Allow both to vary

Back to Baseline Estimates

ALTERNATIVE NOTICE CATEGORIES

UNWEIGHTED SAMPLE

DIFFERENT FUNCTIONAL FORMS

ESTIMATES: 9-WEEK INTERVALS

EXTENSIONS TO RELAX ASSUMPTIONS

- Extended model allows the following to vary by notice length:
 - mean of the type distributions: $\mathbb{E}(\nu|L) = \mathbb{E}(\nu|S) \kappa_1$
 - structural hazards beyond the initial period: $\psi_L(d) = \gamma \psi_S(d)$ for d > 1
- Can show that duration dependence is identified in the extended model if κ₁ and γ are known; however, not possible to show that κ₁ and γ are identified
- Estimate the model by varying the values of additional parameters and identifying optimal values that minimize residuals
- Exercise suggests:
 - no mean differences between the two groups
 - slightly higher hazard for long-notice workers, even after the first 12 weeks
 - → Baseline estimates underestimate the extent of heterogeneity

Back to Assumptions
 Back to Baseline Estimates

ALLOW AVERAGE TYPE TO VARY

APPENDIX: SEARCH MODEL

Search Model

- Workers choose search effort s to maximize discounted expected utility
- Costs of job search *c*(*s*), increasing, convex, twice differentiable
- Probability that worker finds a job, $\lambda(d, \nu, s) = \delta(d)\nu s(d, \nu)$
- Two types of workers $\nu_{\rm H} > \nu_{\rm L}$, π is the share of high-type
- Calibrate Details
 - With heterogeneity, assume two-types of workers and set

 $\mathbb{E}[\mathbf{h}(\mathbf{d}, \nu)] \approx \hat{\psi}(\mathbf{d}) \; (\text{estimate})$

• Without heterogeneity, set

 $\mathbb{E}[h(d,\nu)] \approx \tilde{h}(d) \; (data)$

Search Effort, $\mathbb{E}[s(d, \nu)]$

CALIBRATION DETAILS

Parameter	Value	
Length of each period	12 Weeks	
Discount factor β	0.985	
Relative risk aversion σ	1.75	
Per period wages w	1	
Annuity Payments	0.1	
Unemployment benefits	0.5	
Benefit exhaustion D_B	3	
Search cost parameter $ ho$	1	
Search cost parameter θ	50	
First period arrival rate $\delta(1)$	1	

Search cost: $c(s) = \theta s^{(1+\rho)}/(1+\rho)$