Schedule

πŸ“”: Notes πŸ–₯️: Slides πŸ—’οΈ: Worksheet ✍️: Homework πŸ“–: Solutions

Date Module Topics Material Assessment
Aug 25
Lecture 1
Preliminaries
Numbers and sets; Relations and functions; Summation notation; Necessary and sufficient conditions πŸ–₯️ πŸ—’οΈ πŸ—’οΈ ✍️ πŸ“–
Sep 01 Labor Day
Sep 08
Lecture 2
Linear Algebra
πŸ“”
Matrices: Addition, Subtraction, and Scalar Multiplication; Matrix Multiplication; Vectors; Identity and Null Matrices; Transpose and Inverse of a Matrix πŸ–₯️ πŸ—’οΈ ✍️ πŸ“–
Sep 15
Lecture 3
Conditions for Nonsingularity of a Matrix; Determinant of a Matrix πŸ–₯️ πŸ—’οΈ ✍️ πŸ“– Quiz 1
Sep 22
Lecture 4
Finding the Inverse of a Matrix; Cramer’s Rule; Applications πŸ–₯️ πŸ—’οΈ πŸ—’οΈ ✍️ πŸ“–
Sep 29
Lecture 5
Calculus
πŸ“” πŸ“”
Limit Definition of a Derivative; Limits; Continuity; Rules of Differentiation πŸ–₯️ πŸ—’οΈ ✍️ πŸ“– Quiz 2
Oct 06
Lecture 6
Exponential and Log Functions; Partial Derivatives; Total Differential and Derivative πŸ–₯️ πŸ—’οΈ ✍️ πŸ“–
Oct 13
Lecture 7
Implicit Function Theorem; Integration πŸ–₯️ ✍️ πŸ“– Quiz 3
Oct 20 Midterm Review
Oct 27 Midterm Exam
Nov 03
Lecture 8
Optimization
πŸ“”
Unconstrained Single-Variable Optimization; Concave and Convex Functions πŸ–₯️ πŸ—’οΈ ✍️ πŸ“–
Nov 10
Lecture 9
Multivariable Optimization πŸ–₯️ ✍️ πŸ“–
Nov 17
Lecture 10
Constrained Optimization πŸ–₯️ πŸ—’οΈ ✍️ πŸ“– Quiz 4
Nov 24 Fall Recess
Dec 01
Lecture 11
Envelope Theorem; Quasiconcavity; Convex sets; Homogenous Functions πŸ–₯️ ✍️ πŸ“–
Dec 08 Final Review
Dec 15 Final Exam